Skip to main content
Log in

Significant effect of film thickness on morphology and third-order optical nonlinearities of Cd1−xZnxO semiconductor nanostructures for optoelectronics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The work presented here reported the thickness dependent structural, linear and nonlinear optical properties of nanostructured Cd1−xZnxO thin films. Thin films were prepared with two different thickness (≈ 0.5 µm and 1 µm) by employing a spray pyrolysis (SP) technique for different Zn-doping levels (Cd1−xZnxO with the x value of 0.00, 0.01, 0.05 and 0.1). X-ray diffraction studies confirm the polycrystalline nature having a cubic crystal structure. In terms of an aspect ratio of the columnar structure and dispersion in hexagonal (1 1 1) basal plane orientation, a thickness dependency of structural evolution was discussed. The Scherrer rule was employed to determine the crystallite size and found to be decreased. FESEM images indicate grains which are uniform and grain size slightly increased with an increase in dopant concentration, annealing and thickness of the films, respectively. The optical energy band gap (Eg) of the prepared films was found to be increased from 2.50 to 2.67 eV. The NLO parameters of the samples were measured from the Z-scan data under DPSS continuous wave laser excitation at 532 nm and the results reveal that reverse saturable absorption (RSA) and self-defocusing natures are the attributed and observed nonlinearity of the nanostructures. The third-order NLO components such as β, \(n_{2}\) and χ(3) are found to be enhanced with one order of magnitude higher with the influence of thickness from 1.25 × 10–4 to 2.47 × 10–3 (cm W−1), 7.08 × 10–9 to 3.35 × 10–8 (cm2 W−1) and 4.06 × 10–7 to 1.96 × 10–6 (esu) respectively. The inspiring results of NLO parameters are also due to the increasing localized defect states on grain boundaries as the film thickness increases, suggesting the prepared films are a promising material for nonlinear photonic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Velusamy, R. Xing, R. Ramesh Babu, E. Elangovan, J. Viegas, S. Liu, M. Sridharan, Sens. Actuators B Chem. 297, 126718 (2019)

    Article  Google Scholar 

  2. Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203 (2002)

    Article  ADS  Google Scholar 

  3. M. Burbano, D.O. Scanlon, G.W. Watson, J. Am. Chem. Soc. 133, 15065–15072 (2011)

    Article  Google Scholar 

  4. B. Gokul, P. Matheswaran, R. Sathyamoorthy, J. Mater. Sci. Technol. 29(1), 17–21 (2013)

    Article  Google Scholar 

  5. B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008)

    Article  ADS  Google Scholar 

  6. I.S. Yahia, G.F. Salem, M.S. Abd El-sadek, F. Yakuphanoglu, Superlattices Microstruct. 64, 178–184 (2013)

    Article  ADS  Google Scholar 

  7. A.A. Dakhel, Solid State Sci. 13, 1000–1005 (2011)

    Article  ADS  Google Scholar 

  8. A.V. Moholkar, G.L. Agawane, K.-U. Sim, Y. Kwon, K.Y. Rajpure, J.H. Kim, Appl. Surf. Sci. 257, 93–101 (2010)

    Article  ADS  Google Scholar 

  9. Z. Serbetci, B. Gunduz, A. Al-Ghamdi, F. Al-Hazmic, K. Ark, F. El-Tantawy, et al., Acta Phys. Polonica A 126 (2014).

  10. B. Hymavathi, B. Rajesh Kumar, S. Rao, Subba Rao. T Proced. Mater. Sci. 10, 285–291 (2015)

    Article  Google Scholar 

  11. I.S. Yahia, G.F.J. SalemIqbal, F. Yakuphanoglu, Phys. B 511, 54–60 (2017)

    Article  ADS  Google Scholar 

  12. S. Sonmezoglu, T.A. Termeli, S. Akın, I. Askeroglu, J. Sol-Gel. Sci. Technol. 67, 97–104 (2013)

    Article  Google Scholar 

  13. R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  14. R. Bairy, A. Jayarama, G.K. Shivakumar, P.S. Patil, K. Udaya Bhat, Am. Inst. Phys. 1943(1), 020070 (2018)

    Google Scholar 

  15. D. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez-Sandoval, S. Jimenez-Sandoval, G. Torres-Delgado, C. Zuniga-Romero, Thin Solid Films 371, 105–108 (2000)

    Article  ADS  Google Scholar 

  16. A. Freeman, K. Poeppelmeier, T. Mason, R. Chang, T. Marks, Mrs Bull. 25, 45–51 (2000)

    Article  Google Scholar 

  17. M. Yan, M. Lane, C. Kannewurf, R. Chang, Appl. Phys. Lett. 78, 2342–2344 (2001)

    Article  ADS  Google Scholar 

  18. A.K. Sharma, P.S. Patil, T.P. Sharma, Sharma. Bull. Electrochem. 16(8), 367–369 (2000)

    Google Scholar 

  19. K. Usharani, A.R. Balu, J. Mater. Sci. Mater. Electron. 27, 2071–2078 (2016)

    Article  Google Scholar 

  20. A. Purohit, S. Chander, S.P. Nehra, C. Lal, M.S. Dhaka, Opt. Mater. 47, 345 (2015)

    Article  ADS  Google Scholar 

  21. N. Khedmi, M.B. Rabeh, D. Abdelkadher, F. Ousgi, M. Kanzari, Cryst. Res. Technol. 50(1), 69 (2015)

    Article  Google Scholar 

  22. M.I. Abd-Elrahman, R.M. Khafagy, S.A. Zaki, M.M. Hafiz, Mater. Sci. Semicond. Process. 18, 1 (2014)

    Article  Google Scholar 

  23. Y.F. Yuan, L. Cheng, Y.P. Li, C.M. Liu, J. Su, L.H. Yuan, X.R. Cao, J. Li, Chalcogenide Lett. 14(10), 439–446 (2017)

    Google Scholar 

  24. B. Hymavathi, B. Rajesh Kumar, T. Subba Rao, Opt. Quant. Electron. 49, 86 (2017)

    Article  Google Scholar 

  25. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  26. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  27. A. Purohit, S. Chander, A. Sharma, S.P. Nehra, M.S. Dhaka, Opt. Mater. 49, 51–58 (2015)

    Article  ADS  Google Scholar 

  28. Z. Serbetci, F. Dagdelen, R.K. Gupta, F. Yakuphanoglu, Mater. Lett. 80, 127–130 (2012)

    Article  Google Scholar 

  29. M. Shkir, S. AlFaify, V. Ganesh, I.S. Yahia, Solid State Sci. 70, 81–85 (2017)

    Article  ADS  Google Scholar 

  30. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974), p. 159

    Book  Google Scholar 

  31. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903–922 (1970)

    Article  ADS  Google Scholar 

  32. O.S. Heaven, Optical properties of the solid films (Dover, New York, 1965)

    Google Scholar 

  33. M. Anitha, K. Saravanakumar, N. Anitha, I. Kulandaisamy, L. Amalraj, Mater. Sci. Eng. B 243, 54–64 (2019)

    Article  Google Scholar 

  34. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Phys. B 555, 145–151 (2019)

    Article  ADS  Google Scholar 

  35. R. Bairy, A. Jayarama, M.M.S. Murari, Mater. Today Proc. (2020)

  36. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlicka, J. Non-Cryst. Solids 326, 399 (2003)

    Article  ADS  Google Scholar 

  37. R. Bairy, P. Shankaragouda Patil, S.R. Maidur, H. Vijeth, M.S. Murari, K. Udaya Bhat, RSC Adv. 9(39), 22302–22312 (2019)

    Article  Google Scholar 

  38. F.L.S. Cuppo, A.M. Figueiredo Neto, S.L. Gomez, P. Palffy-Muhoray, J. Opt. Soc. Am. B 19(6), 1342 (2002)

    Article  ADS  Google Scholar 

  39. R.W. Boyd, in Nonlinear Optics, Text Book Version, 3rd edn, (pp. 1–50)

  40. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagen, E.W. Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  41. R. Bairy, S.D. Kulkarni, M.S. Murari, Opt. Laser Technol. 126, 106113 (2020)

    Article  Google Scholar 

  42. R. Bairy, A. Jayarama, G.K. Shivakumar, K. Radhakrishnan, U.K. Bhat, J. Mater. Sci. Mater. Electron. 30(07), 6993–7004 (2019)

    Article  Google Scholar 

  43. B. Shanmugavelu, V.V.R.K. Kumar, R. Kuladeep, D.N. Rao, J. Appl. Phys. 114, 243103 (2013)

    Article  ADS  Google Scholar 

  44. R. Bairy, A. Jayarama, S.D. Kulkarni, M.S. Murari, H. Vijeth, Mater. Res. Express 6(9), 096447 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The author Dr. Raghavendra Bairy would like to acknowledge NMAMIT Nitte, India, for providing the research facilities and support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Bairy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairy, R., Jayarama, A. & Murari, M.S. Significant effect of film thickness on morphology and third-order optical nonlinearities of Cd1−xZnxO semiconductor nanostructures for optoelectronics. Appl. Phys. A 126, 603 (2020). https://doi.org/10.1007/s00339-020-03771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03771-4

Keywords

Navigation