Skip to main content
Log in

Continuous scattering angle control of transmission terahertz wave by convolution manipulation of all-dielectric encoding metasurfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The digitally encoded metasurface provides flexible manipulation of the scattering properties of electromagnetic wave beams, and it can connect metasurface particles to digital codes to achieve unusual physical phenomena. At first, the research of coding metasurface mainly focused on the structural elements of metal materials. However, the ohmic loss of metal materials seriously affects the scattering efficiency of coding metasurface. To overcome ohmic loss, we propose to construct coded metasurface using all-dielectric element structure. Here, a complete \(2{\uppi }\) transmitted phase with high efficiency can be controlled by cylindrical unit structures in terahertz frequency. Different coding sequences can control different transmission and scattering angles. However, these commonly coded metasurfaces cannot achieve continuous control of the scattering angle. In this study, Fourier convolution principle in digital signal processing is introduced through the four-bit operation of adding and subtracting two coding sequences to construct a new code sequence metasurface. The required coding pattern to flexible and continuous control scattering angle can be realized by the modulus of two encoding sequences. The Fourier convolution calculations of two gradient one-dimension encoding sequences and chessboard encoding sequences are implemented to realize the flexible control of single transmission beam and multiple beams. This fully digital perspective on the encoding metasurface can combine conventional digital signal processing with the encoding metasurface to achieve powerful manipulation of electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, D. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    Article  ADS  Google Scholar 

  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three dimensional optical metamaterial with a negative refractive index. Nature 455(7211), 376–379 (2008)

    Article  ADS  Google Scholar 

  3. X. Luo, Z. Tan, C. Wang, J. Cao, A reflecting-type highly efficient terahertz cross-polarization converter based on metamaterials. Chin. Opt. Lett. 17(9), 093101 (2019)

    Article  ADS  Google Scholar 

  4. W. Liang, Z. Li, Y. Wang, W. Chen, Z. Li, All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials. Photon. Res. 7(3), 318–324 (2019)

    Article  ADS  Google Scholar 

  5. Y. Cui, G. Zheng, M. Chen, Y. Zhang, Y. Yang, J. Tao, T. He, Z. Li, Reconfigurable continuous-zoom metalens in visible band. Chin. Opt. Lett. 17(11), 111603 (2019)

    Article  Google Scholar 

  6. M. Choi, S. Lee, Y. Kim, S. Kang, J. Shin, M. Kwak, K. Kang, Y. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011)

    Article  ADS  Google Scholar 

  7. S. Teng, Q. Zhang, H. Wang, L. Liu, H. Lv, Conversion between polarization states based on metasurface. Photonics Res. 7(3), 246–250 (2019)

    Article  Google Scholar 

  8. L. Koirala, C. Park, S. Lee, D. Choi, Angle tolerant transmissive color filters exploiting metasurface incorporating hydrogenated amorphous silicon nanopillars. Chin. Opt. Lett. 17(8), 082301 (2019)

    Article  ADS  Google Scholar 

  9. F. Aieta, P. Genevet, M. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultrathin flat lenses and axicons at tele-com wavelengths based on plasmonic metasurfaces. Nano Lett. 12(9), 4932–4936 (2012)

    Article  ADS  Google Scholar 

  10. T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, P. Zhou, Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Sci. Eng. 7(4), e59 (2019)

    Article  Google Scholar 

  11. X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, S. Zhuang, Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater. 7(3), 1801328 (2019)

    Article  Google Scholar 

  12. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, Y. Li, Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115, 154504 (2014)

    Article  ADS  Google Scholar 

  13. H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, L. Qian, Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin. Opt. Lett. 17(5), 052303 (2019)

    Article  ADS  Google Scholar 

  14. M. Huault, D. De Luis, J. Apinaniz, M. De Marco, C. Salgado, N. Gordillo, C. Neira, J.A. Perez-Hernandez, R. Fedosejevs, G. Gatti, L. Roso, L. Volpe, A 2D scintillator-based proton detector for high repetition rate experiments. High Power Laser Sci. Eng. 7(4), 60 (2019)

    Article  Google Scholar 

  15. H. Li, G. Wang, H. Xu, T. Cai, J. Liang, X-band phase-gradient metasurface for high-gain lens antenna application. IEEE Trans. Antennas Propag. 63(11), 5144–5149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Wan, J. Gao, X. Yang, Metasurface holograms for holographic imaging. Adv Opt Mater. 5(21), 1700541 (2017)

    Article  Google Scholar 

  17. L. Huang, S. Zhang, T. Zentgraf, Metasurface holography: from fundamentals to applications. Nanophotonics. 7(6), 1169–1190 (2018)

    Article  Google Scholar 

  18. N. Pegard, J. Fleischer, Optimizing holographic data storage using a fractional Fourier transform. Opt Lett. 36(13), 2551–2553 (2011)

    Article  ADS  Google Scholar 

  19. X. Goh, Y. Zheng, S. Tan, L. Zhang, K. Kumar, C. Qiu, J. Yang, Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun. 5, 5361 (2014)

    Article  ADS  Google Scholar 

  20. L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. Kuznetsov, Y. Kivshar, J. Yang, C. Qiu, Noninterleaved metasurface for spin- and wavelength-encoded holograms. Nano Lett. 18(12), 8016–8024 (2018)

    Article  ADS  Google Scholar 

  21. H. Liu, B. Yang, Q. Guo, J. Shi, C. Guan, G. Zheng, H. Muhlenbernd, G. Li, T. Zentgraf, S. Zhang, Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci Adv. 3(9), e1701477 (2017)

    Article  ADS  Google Scholar 

  22. S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, D. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227–232 (2018)

    Article  ADS  Google Scholar 

  23. S. Wang, P. Wu, V. Su, L. Lai, C. Chu, J. Chen, S. Lu, J. Chen, B. Xu, C. Kuan, T. Li, S. Zhu, D. Tsai, Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017)

    Article  ADS  Google Scholar 

  24. A. Minovich, A. Miroshnichenko, A. Bykov, T. Murzina, D. Neshev, Y. Kivshar, Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9(2), 195–213 (2015)

    Article  ADS  Google Scholar 

  25. Y. Xiao, H. Qian, Z. Liu, Nonlinear metasurface based on giant optical Kerr response of gold quantum wells. ACS Photonics 5(5), 1654–1659 (2018)

    Article  Google Scholar 

  26. D. Giovampaola, C.N. Engheta, Digital metamaterials. Nat. Mater. 13(12), 1115 (2014)

    Article  ADS  Google Scholar 

  27. T. Cui, M. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014)

    Article  ADS  Google Scholar 

  28. S. Liu, A. Noor, L. Du, L. Zhang, Q. Xu, K. Luan, T. Wang, Z. Tian, W. Tang, J. Han, Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3(10), 1968–1977 (2016)

    Article  Google Scholar 

  29. L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, J. Yao, Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies. Sci. Rep. 6, 39252 (2016)

    Article  ADS  Google Scholar 

  30. Y. Yu, A. Zhu, R. Paniagua-Domínguez, Y. Fu, B. Luk’ Yanchuk, A. Kuznetsov, High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9(4), 412–418 (2015)

    Article  ADS  Google Scholar 

  31. S. Liu, L. Zhang, Q. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Lqbal, X. Wan, Z. Tian, W. Tang, Q. Cheng, J. Han, W. Zhang, T. Cui, Frequency dependent dual functional coding meta-surfaces at terahertz frequencies. Adv. Opt. Mater. 4(12), 1965–1973 (2016)

    Article  Google Scholar 

  32. X. Li, S. Xiao, B. Cai, Q. He, T. Cui, L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37(23), 4940–4942 (2012)

    Article  ADS  Google Scholar 

  33. M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, W. Zhu, High Efficiency Ultrathin Transmissive Metasurfaces. Adv. Opt. Mater. 7(11), 1801628 (2019)

    Article  Google Scholar 

  34. M. Akram, G. Ding, K. Chen, Y. Feng, W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater. 32(12), 1907308 (2020)

    Article  Google Scholar 

  35. M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, W. Zhu, Photon spin hall effect-based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag. 67(7), 4650–4658 (2019)

    Article  ADS  Google Scholar 

  36. S. Liu, L. Zhang, Q. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Lqbal, X. Wan, Z. Tian, W. Tang, Q. Cheng, J. Han, W. Zhang, T. Cui, Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv. Opt. Mater. 4(12), 1965–1973 (2016)

    Article  Google Scholar 

  37. S. Liu, T. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Gu, W. Tang, M. Qi, J. Han, W. Zhang, X. Zhou, Q. Cheng, Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3(10), 1600156 (2016)

    Article  Google Scholar 

  38. N. Yu, P. Genevet, M. Kats, F. Aieta, J. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054), 333–337 (2011)

    Article  ADS  Google Scholar 

  39. X. Bie, X. Jing, Z. Hong, C. Li, Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces. Appl. Opt. 57(30), 9070–9077 (2018)

    Article  ADS  Google Scholar 

  40. Z. Ma, S. Hanham, P. Albella, B. Ng, H. Lu, Y. Gong, S. Maier, M. Hong, Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photonics 3(6), 1010–1018 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from National Key R&D Program of China (No. 2018YFF01013005); Natural Science Foundation of Zhejiang Province (No. LY20F050007 and No. LQ18F050004); National Natural Science Foundation of China (No. 51972292 and No. 61875159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhui Cai, Haiyong Gan or Xufeng Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Ke, Y., Jiang, L. et al. Continuous scattering angle control of transmission terahertz wave by convolution manipulation of all-dielectric encoding metasurfaces. Appl. Phys. A 126, 619 (2020). https://doi.org/10.1007/s00339-020-03720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03720-1

Keywords

Navigation