Skip to main content
Log in

Material considerations for thermoelectric enhancement via modulation doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Modulation doping has recently emerged as a method for improving the thermoelectric figure of merit using composite materials. By spatially decoupling charge carriers from their dopant impurities, the average carrier mobility can be improved by reducing the influence of ionized impurity scattering. However, as we show in the present work using a simple parabolic band model and effective medium approach, enhancement in such composites is effective only if ionized impurities dominate the scattering of the charge carriers, which is often not the case in many materials. For example, the enhancement is more significant at lower temperatures (T < 300 K for our model material) where acoustic phonon scattering begins to freeze out. Furthermore, for large dielectric constant, which is common for good thermoelectric materials, the ionized impurities are largely screened, and formation of the modulation-doped composite is likely to have little to no benefit, or possibly even degrade the thermoelectric performance of the material. The effective mass of the charge carriers also plays an important role in the relative strength of the scattering mechanism and the possibility for thermoelectric enhancement through modulation doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  Google Scholar 

  2. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd, London, 1957)

    Google Scholar 

  3. D. Beretta, N. Neophytou, J. M. Hodges, M. Kanatzidis, D. Narducci, M. Martiin-Gonzaalez, M. Beekman, B. Balke, G. Cerritti, W. Tremel, A. Zevalkink, A. I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi, Mater. Sci. Eng. R. Reports, in press (2018). https://doi.org/10.1016/j.mser.2018.09.001

  4. G.J. Snyder, E.S. Toberer, Nature Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  5. M. Beekman, D.T. Morelli, G.S. Nolas, Nature Mater. 14, 1182 (2015)

    Article  ADS  Google Scholar 

  6. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010)

    Article  Google Scholar 

  7. J. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nature Nanotech. 8, 471 (2013)

    Article  ADS  Google Scholar 

  8. A.M. Dehkordi, M. Zebarjadi, J. He, T.M. Tritt, Mater. Sci. Eng. R Rep. 97, 1 (2015)

    Article  Google Scholar 

  9. D.J. Bergman, O. Levy, J. Appl. Phys. 70, 6821 (1991)

    Article  ADS  Google Scholar 

  10. D.J. Bergman, L.G. Fel, J. Appl. Phys. 85, 8205 (1999)

    Article  ADS  Google Scholar 

  11. J.P. Heremans, C.M. Jaworski, Appl. Phys. Lett. 93, 122107 (2008)

    Article  ADS  Google Scholar 

  12. R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978)

    Article  ADS  Google Scholar 

  13. L. Pfeiffer, K.W. West, H.L. Störmer, K.W. Baldwin, Appl. Phys. Lett. 55, 1888 (1989)

    Article  ADS  Google Scholar 

  14. D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  15. L.D. Hicks, M.D. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  16. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan et al., Nano Lett. 11, 2225 (2011)

    Article  ADS  Google Scholar 

  17. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang et al., Nano Lett. 12, 2077 (2012)

    Article  ADS  Google Scholar 

  18. Y.-L. Pei, H. Wu, D. Wu, F. Zheng, J. He, J. Am. Chem. Soc. 136, 13902 (2014)

    Article  Google Scholar 

  19. D. Wu, Y. Pei, Z. Wang, H. Wu, L. Huang, L.-D. Zhao et al., Adv. Funct. Mater. 24, 7763 (2014)

    Article  Google Scholar 

  20. M. Beekman, S.R. Bauers, D.M. Hamann, D.C. Johnson, in Advanced Thermoelectric Materials, ed. by C.R. Park (Wiley, New York, 2018), pp. 1–34

    Google Scholar 

  21. Q.R. Hou, B.F. Gu, Y.B. Chen, Y.J. He, Phys. Status Solidi A. 209, 1307 (2012)

    Article  ADS  Google Scholar 

  22. A. Samarelli, L. FerreLlin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller et al., J. Appl. Phys. 113, 233704 (2013)

    Article  ADS  Google Scholar 

  23. D. Lee, S.Y. Sayed, S. Lee, C.A. Kuryak, J. Zhou, G. Chen, Y. Shao-Horn, Nanoscale 8, 19754 (2016)

    Article  Google Scholar 

  24. N. Neophytou, S. Foster, V. Vargiamidis, G. Pennelli, D. Narducci, Mater. Today Phys. 11, 100159 (2019)

    Article  Google Scholar 

  25. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)

    Article  ADS  Google Scholar 

  26. G.H. Döhler, J. Vac. Sci. Technol. 16, 851 (1979)

    Article  ADS  Google Scholar 

  27. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950)

    Article  ADS  Google Scholar 

  28. S.S. Li, Semiconductor Physical Electronics (Springer LLC, New York, 2006)

    Book  Google Scholar 

  29. H. Brooks, in Advances in Electronics and Electron Physics, vol. 7, ed. by L. Marton (Academic Press, New York, 1955), pp. 85–182

    Google Scholar 

  30. Y. Gelbstein, J. Appl. Phys. 105, 023713 (2009)

    Article  ADS  Google Scholar 

  31. Python Software Foundation. Python Programming Language, version 3.5.2. https://www.python.org [Online; accessed 2019–06–26].

  32. E. Jones, E. Oliphant, P. Peterson, et al. SciPy: Open Source Scientific Tools for Python, 2001-. https://www.scipy.org/ [Online; accessed 2019–06–26].

  33. Semiconductors on NSM. https://www.ioffe.ru/SVA/NSM/Semicond/. Accessed March 1, 2019.

  34. R.P. Chasmar, R.J. Stratton, J. Electron. Control 7, 52 (1959)

    Article  Google Scholar 

  35. Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Energy Env. Sci. 5, 7963 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

MB, GH, and TML gratefully acknowledge support from a Cal Poly Research, Scholarly, and Creative Activities grant. MB and GH gratefully acknowledge support from the William and Linda Frost Fund. DCJ acknowledges support from the National Science Foundation under grant DMR-1710214. MB thanks M. Zebarjadi, G. J. Snyder, and M. J. Moelter for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Beekman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beekman, M., Heaton, G., Linker, T.M. et al. Material considerations for thermoelectric enhancement via modulation doping. Appl. Phys. A 126, 517 (2020). https://doi.org/10.1007/s00339-020-03673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03673-5

Keywords

Navigation