Skip to main content
Log in

Direct laser patterning for transparent superhydrophobic glass surfaces without any chemical coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study describes a simple method to fabricate a transparent superhydrophobic soda-lime glass surface. The method uses only laser-beam machining and heat treatment, without the application of a chemical coating. The resulting surface exhibited superhydrophobicity at a contact angle (CA) greater than 170° and a sliding angle (SA) less than 10°. In addition, relatively acceptable transmittance (> 50%) in visible light was observed. The superhydrophobic surface and superior transmittance were shown at relatively high laser powers (0.4 and 0.5 W), with a relatively large step size (300 and 350 µm). At a laser power of 0.2 W, the superhydrophobicity of the surface decreased. When the step size was increased from 150 to 350 µm with a reduced laser power (0.2 and 0.3 W), the CA decreased slightly and the SA increased from 5° to 60°. CA and SA can, therefore, be controlled with process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Nishimoto, B. Bhushan, RSC Adv. 3, 671 (2013)

    Google Scholar 

  2. J. Chen, Z. Luo, Q. Fan, J. Lv, J. Wang, Small 10, 4693 (2014)

    Google Scholar 

  3. M.H.M.A. Shibraen, H. Yagoub, X. Zhang, J. Xu, S. Yang, Appl. Surf. Sci. 370, 1 (2016)

    ADS  Google Scholar 

  4. A.H.A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  5. D.M. Chun, C.V. Ngo, K.M. Lee, CIRP Ann. Manuf. Technol. 65, 519 (2016)

    Google Scholar 

  6. Y. Tuo, H. Zhang, W. Rong, S. Jiang, W. Chen, X. Liu, Langmuir 35, 11016 (2019)

    Google Scholar 

  7. C. Dong, Y. Gu, M. Zhong, L. Li, K. Sezer, M. Ma, W. Liu, J. Mater. Process. Technol. 211, 1234 (2011)

    Google Scholar 

  8. C.V. Ngo, D.M. Chun, Adv. Eng. Mater. 20, 1 (2018)

    Google Scholar 

  9. C.-V. Ngo, D.-M. Chun, Appl. Surf. Sci. 435, 974 (2018)

    ADS  Google Scholar 

  10. T.H. Dinh, C.V. Ngo, D.M. Chun, Nanomaterials 8, 766 (2018)

    Google Scholar 

  11. Y. Lin, J. Han, M. Cai, W. Liu, X. Luo, H. Zhang, M. Zhong, J. Mater. Chem. A 6, 9049 (2018)

    Google Scholar 

  12. C.V. Ngo, D.M. Chun, CIRP Ann. 67, 571 (2018)

    Google Scholar 

  13. A. Riveiro, A.L.B. Maçon, J. del Val, R. Comesaña, J. Pou, Front. Phys. 6, 16 (2018)

    Google Scholar 

  14. D.M. Chun, G. Davaasuren, C.V. Ngo, C.S. Kim, G.Y. Lee, S.H. Ahn, CIRP Ann. Manuf. Technol. 63, 525 (2014)

    Google Scholar 

  15. X. Chen, J. Wen, J. Zhou, Z. Zhang, D. Yan, H. Wang, W. Xie, R. Zhan, N. Xu, J. Chen, J. She, H. Chen, S. Deng, J. Opt. 20, 024012 (2018)

    ADS  Google Scholar 

  16. P. Dimitrakellis, A. Travlos, V.P. Psycharis, E. Gogolides, Plasma Process. Polym. 14, 1 (2017)

    Google Scholar 

  17. S. Sutha, S. Suresh, B. Raj, K.R. Ravi, Sol. Energy Mater. Sol. Cells 165, 128 (2017)

    Google Scholar 

  18. L. Zhang, C.H. Xue, M. Cao, M.M. Zhang, M. Li, J.Z. Ma, Chem. Eng. J. 320, 244 (2017)

    Google Scholar 

  19. S. Zhao, J. Zhao, M. Wen, M. Yao, F. Wang, F. Huang, Q. Zhang, Y.B. Cheng, J. Zhong, Langmuir 34, 11316 (2018)

    Google Scholar 

  20. B. Wang, Y. Hua, Y. Ye, R. Chen, Z. Li, Appl. Surf. Sci. 426, 957 (2017)

    ADS  Google Scholar 

  21. L.B. Boinovich, A.G. Domantovskiy, A.M. Emelyanenko, A.S. Pashinin, A.A. Ionin, S.I. Kudryashov, P.N. Saltuganov, A.C.S. Appl, Mater. Interfaces 6, 2080 (2014)

    Google Scholar 

  22. K.J. Bachus, L. Mats, H.W. Choi, G.T.T. Gibson, R.D. Oleschuk, A.C.S. Appl, Mater. Interfaces 9, 7629 (2017)

    Google Scholar 

  23. S. Moradi, N. Hadjesfandiari, S.F. Toosi, J.N. Kizhakkedathu, S.G. Hatzikiriakos, A.C.S. Appl, Mater. Interfaces 8, 17631 (2016)

    Google Scholar 

  24. S. Takeda, K. Yamamoto, Y. Hayasaka, K. Matsumoto, J. Non. Cryst. Solids 249, 41 (1999)

    ADS  Google Scholar 

  25. E. Ueda, P.A. Levkin, Adv. Mater. 25, 1234 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was support by a National Research Foundation of Korea (NRF) Grant (NRF-2018R1A2B6004012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo-Man Chun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 92362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, TH., Ngo, CV. & Chun, DM. Direct laser patterning for transparent superhydrophobic glass surfaces without any chemical coatings. Appl. Phys. A 126, 462 (2020). https://doi.org/10.1007/s00339-020-03653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03653-9

Keywords

Navigation