Skip to main content
Log in

Growth dynamics of pulsed laser deposited WS2 thin films on different substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The scaling behavior, as well as growth mechanism of polycrystalline WS2 thin films grown on glass and Si substrates by pulsed laser deposition as a function of the deposition time, has been studied using height–height correlation function using the AFM images. X-ray diffraction measurement confirms the increase in crystallinity of the WS2 thin film on both the substrates. The WS2 films deposited onto Si substrate showed high rate of roughening or interface width (w) and a rapid increase in island size or correlation length (ξ) of WS2 nanoclusters in comparison to the films deposited onto glass substrate. The WS2 films grown on glass substrate evolved following the nonlinear stochastic deposition equation, however, WS2 films on Si substrate follow a linear growth model. The difference in surface smoothness, thermal conductivity and sticking coefficient of the two substrates causes different growth patterns of WS2 films onto the substrates. The growth of the WS2 films on the two different substrates evolved differently which has been realized more conveniently by schematically analyzing the behavior of the evolution of ξ and w with deposition time, t. The high roughness of the films deposited onto oxidized Si provides a large surface area, which will be useful for electro-catalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Song, J. Hu, H. Zeng, Two-dimensional semiconductors: recent progress and future perspectives. J Mater. Chem. C 1, 2952 (2013)

    Google Scholar 

  2. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012)

    ADS  Google Scholar 

  3. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766 (2013)

    Google Scholar 

  4. A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7, 5235 (2013)

    Google Scholar 

  5. X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling, Z. Mao, J. Wei, High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8, 10396 (2014)

    Google Scholar 

  6. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015)

    ADS  Google Scholar 

  7. T.A. Loh, D.H. Chua, A.T. Wee, One-step synthesis of few-layer WS 2 by pulsed laser deposition. Sci. Rep. 5, 18116 (2015)

    ADS  Google Scholar 

  8. J. Yao, Z. Zheng, J. Shao, G. Yang, Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 7, 14974 (2015)

    ADS  Google Scholar 

  9. M. Schenato, C.L.A. Ricardo, P. Scardi, R. Edla, A. Miotello, M. Orlandi, R. Morrish, Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis. Appl. Catal. A Gen. 510, 156 (2016)

    Google Scholar 

  10. J. Jeffries, J.-K. Zuo, M. Craig, Instability of kinetic roughening in sputter-deposition growth of Pt on glass. Phys. Rev. Lett. 76, 4931 (1996)

    ADS  Google Scholar 

  11. M. Pelliccione, T. Karabacak, C. Gaire, G.-C. Wang, T.-M. Lu, Mound formation in surface growth under shadowing. Phys. Rev. B 74, 125420 (2006)

    ADS  Google Scholar 

  12. P.P. Chatraphorn, Z. Toroczkai, S.D. Sarma, Epitaxial mounding in limited-mobility models of surface growth. Phys. Rev. B 64, 205407 (2001)

    ADS  Google Scholar 

  13. Y.-P. Zhao, J. Fortin, G. Bonvallet, G.-C. Wang, T.-M. Lu, Kinetic roughening in polymer film growth by vapor deposition. Phys. Rev. Lett. 85, 3229 (2000)

    ADS  Google Scholar 

  14. K.H. Hu, X.G. Hu, X.J. Sun, Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 256, 2517 (2010)

    ADS  Google Scholar 

  15. D.J. Late, P.A. Shaikh, R. Khare, R.V. Kashid, M. Chaudhary, M.A. More, S.B. Ogale, Pulsed laser-deposited MoS2 thin films on W and Si: field emission and photoresponse studies. ACS Appl. Mater. Interfaces. 6, 15881 (2014)

    Google Scholar 

  16. J. Zabinski, M. Donley, S. Prasad, N. McDevitt, Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition. J. Mater. Sci. 29, 4834 (1994)

    ADS  Google Scholar 

  17. G. Pradhan, A.K. Sharma, Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films. J. Mater. Sci. 54, 14809 (2019)

    ADS  Google Scholar 

  18. J.J. Ramasco, J.M. López, M.A. Rodríguez, Generic dynamic scaling in kinetic roughening. Phys. Rev. Let. 84, 2199 (2000)

    ADS  Google Scholar 

  19. M. Pelliccione, T.M. Lu, Evolution of Thin Film Morphology: Modeling and Simulations, 1st edn. (Springer, New York, 2008)

    Google Scholar 

  20. M. Pelliccione, T.-M. Lu, Evolution of thin film morphology (Springer, New York, 2008)

    Google Scholar 

  21. G. Pradhan, P.P. Dey, A.K. Sharma, Anomalous kinetic roughening in growth of MoS 2 films under pulsed laser deposition. RSC Adv. 9, 12895 (2019)

    Google Scholar 

  22. F. Ruffino, M. Grimaldi, Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si (111): evolution with film thickness and annealing time. J. Appl. Phys. 107, 104321 (2010)

    ADS  Google Scholar 

  23. M. Raible, S. Mayr, S.J. Linz, M. Moske, P. Hänggi, K. Samwer, Amorphous thin-film growth: theory compared with experiment. EPL Europhys. Lett. 50, 61 (2000)

    ADS  Google Scholar 

  24. M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)

    ADS  MATH  Google Scholar 

  25. W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28, 333 (1957)

    ADS  Google Scholar 

  26. S.F. Edwards, D. Wilkinson, The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A Math. Phys. Sci. 381, 17 (1982)

    ADS  Google Scholar 

  27. N. Tripathi, S. Rath, V. Ganesan, R. Choudhary, Growth dynamics of pulsed laser deposited indium oxide thin films: a substrate dependent study. Appl. Surf. Sci. 256, 7091 (2010)

    ADS  Google Scholar 

  28. R. Dolbec, E. Irissou, M. Chaker, D. Guay, F. Rosei, M. El Khakani, Growth dynamics of pulsed laser deposited Pt nanoparticles on highly oriented pyrolitic graphite substrates. Phys. Rev. B 70, 201406 (2004)

    ADS  Google Scholar 

  29. M.A. Auger, L. Vázquez, O. Sánchez, M. Jergel, R. Cuerno, M. Castro, Growth dynamics of reactive-sputtering-deposited AlN films. J. Appl. Phys. 97, 123528 (2005)

    ADS  Google Scholar 

  30. I. Weaver, C. Lewis, Polar distribution of ablated atomic material during the pulsed laser deposition of Cu in vacuum: dependence on focused laser spot size and power density. J. Appl. Phys. 79, 7216 (1996)

    ADS  Google Scholar 

  31. J.T. Drotar, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, Surface roughening in shadowing growth and etching in 2 + 1 dimensions. Phys. Rev. B 62, 2118 (2000)

    ADS  Google Scholar 

  32. M. Grajower, U. Levy, J.B. Khurgin, The role of surface roughness in plasmonic-assisted internal photoemission schottky photodetectors. ACS Photon. 5, 4030 (2018)

    Google Scholar 

  33. Kushwaha A, Aslam M, Roughness enhanced surface defects and photoconductivity of acid etched ZnO nanowires, in: 2012 International Conference on Emerging Electronics, IEEE, pp. 1–4 (2012)

  34. I. Herraiz-Cardona, E. Ortega, J.G. Antón, V. Pérez-Herranz, Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. Int. J. Hydrog. Energy 36, 9428 (2011)

    Google Scholar 

  35. A.-K. Chan, H. Wang, M.J. Chan, High quality thermal oxide on LPSOI formed by high temperature enhanced MILC. IEEE Electron Device Lett. 22, 384 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged department of Physics, IIT Guwahati for XRD facility, Center for excellence in Nanoelectronics & Theranostic Devices, IIT Guwahati for AFM facility. The authors gratefully acknowledge Mr. Ankur Pandey for his kind help in AFM data recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, G., Dey, P.P. & Sharma, A.K. Growth dynamics of pulsed laser deposited WS2 thin films on different substrates. Appl. Phys. A 126, 475 (2020). https://doi.org/10.1007/s00339-020-03650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03650-y

Keywords

Navigation