Skip to main content
Log in

Elastic study and optical dispersion characterization of Fe-substituted cobalt aluminate nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The point of this work is to study the impact of Fe3+ ions substitution on the structural, elastic and optical properties of CoAl2O4 nanoparticles. A series of CoAl2−xFexO4 nanoparticles, 0.00 ≤ x ≤ 0.20, are prepared by chemical co-precipitation method. X-ray diffraction besides the FTIR examination affirms the forming of single-phase cubic spinel CoAl2O4 for Fe3+-substituted samples. The lattice constant a is found to be increased with increasing Fe3+ content obeying Vegard’s law. The dependence of theoretical density, porosity and crystallite size on Fe3+ content x is discussed. FTIR spectral analysis is used to estimate the elastic moduli such as stiffness constant, Young’s modulus, rigidity modulus, bulk modulus, Poisson’s ratio, wave velocity and Debye temperature. The stiffness constants and Poisson’s ratio increase with the increase in Fe3+ content due to the decrease in porosity and substitution process. The values of Young’s modulus, rigidity modulus and Debye temperature reduce with an increase in the Fe3+ content, whereas the bulk modulus increases with x. The optical properties of CoAl2–xFexO4 nanoparticles are analyzed using UV–Vis spectrophotometer measurements in the spectral range of 200–1100 nm. Some of dispersion parameters are evaluated based on a single oscillator model, such as oscillator energy Eo, dispersion energy Ed, lattice dielectric constant εl, the average value of oscillator strength, SO, and wavelength of single oscillator λO. The most important result of the current work is the use of Fe3+ ion substitution in CoAl2O4 nanoparticles, which can be used to modify the elastic moduli, optical band gaps and dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Akdemir, E. Ozel, E. Suvaci, Ceram. Int. 37, 863 (2011)

    Article  Google Scholar 

  2. J. Chandradass, M. Balasubramanian, K.H. Kim, J. Alloys Compd. 506, 395 (2010)

    Article  Google Scholar 

  3. C. Wang, S. Liu, L. Liu, Mater. Chem. Phys. 96, 361 (2006)

    Article  ADS  Google Scholar 

  4. Q. Wang, Q. Chang, Y. Wang, X. Wang, J.E. Zhou, Mater. Lett. 173, 64 (2016)

    Article  Google Scholar 

  5. M. Iakovleva, E. Vavilova, H.J. Grafe, S. Zimmermann, A. Alfonsov, H. Luetkens, H.H. Klauss, A. Maljuk, S. Wurmehl, B. Büchner, V. Kataev, Phys. Rev. B 91, 144419 (2015)

    Article  ADS  Google Scholar 

  6. O. Zaharko, S. Tóth, O. Sendetskyi, A. Cervellino, A. Wolter-Giraud, T. Dey, A. Maljuk, V. Tsurkan, Phys. Rev. B 90, 134416 (2014)

    Article  ADS  Google Scholar 

  7. A. Manikandan, M. Durka, S. Arul Antony, J. Inorg. Organomet. Polym. 25, 804 (2015)

    Article  Google Scholar 

  8. M. Khairy, J. Iran. Chem. Soc. 13, 671 (2016)

    Article  Google Scholar 

  9. D.K. Manimegalai, A. Manikandan, S. Moortheswaran, S. Arul Antony, J. Supercond. Nov. Magn. 28, 2755 (2015)

    Article  Google Scholar 

  10. A. Manikandan, S. Arul Antony, J. Supercond. Nov. Magn. 27, 2725 (2014)

    Article  Google Scholar 

  11. D. El-Said Bakeer, A.H. Sakr, J. Supercond. Nov. Magn. 32, 2119 (2019). https://doi.org/10.1007/s10948-018

    Article  Google Scholar 

  12. S. Suguna, S. Shankar, S.K. Jaganathan, A. Manikandan, J. Supercond. Nov. Magn. 30, 691 (2017)

    Article  Google Scholar 

  13. M. Dondi, C. Zanelli, M. Ardit, G. Cruciani, L. Mantovani, M. Tribaudino, G.B. Andreozzi, Ceram. Int. 39, 9533 (2013)

    Article  Google Scholar 

  14. K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, J. Alloys Compd. 676, 606 (2016)

    Article  Google Scholar 

  15. M. Jafari, S.A. Hassanzadeh-Tabrizi, Powder Technol. 266, 236 (2014)

    Article  Google Scholar 

  16. J.-H. Kim, B.-R. Son, D.-H. Yoon, K.-T. Hwang, H.-G. Noh, W.-S. Cho, U.-S. Kim, Ceram. Int. 38, 5707 (2012)

    Article  Google Scholar 

  17. I. Mindru, G. Marinescu, D. Gingasu, L. Patron, C. Ghica, M. Giurginca, Mater. Chem. Phys. 122, 491 (2010)

    Article  Google Scholar 

  18. S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Varsoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi, K.B. Modi, Ind. J. Pure Appl. Phys. 45, 596 (2007)

    Google Scholar 

  19. A.V. Anupama, V. Rathod, V.M. Jali, B. Sahoo, J. Alloys Compd. 728, 1091 (2017)

    Article  Google Scholar 

  20. B. Rajesh Babu, T. Tatarchuk, Mater. Chem. Phys. 207, 534 (2018)

    Article  Google Scholar 

  21. A. Fernández-Osorio, E. Pineda-Villanueva, J. Chávez-Fernández, Mater. Res. Bull. 47, 445 (2012)

    Article  Google Scholar 

  22. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  23. S.A. Safaan, A.M. Abo El Ata, M.S. El Messeery, J. Magn. Magn. Mater. 302, 362 (2006)

    Article  ADS  Google Scholar 

  24. M.F. Al-Hilli, S. Li, K.S. Kassim, Mater. Sci. Eng. B 158, 1 (2009)

    Article  Google Scholar 

  25. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  26. M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, S. Ampshire, Physica B 405, 1532 (2010)

    Article  ADS  Google Scholar 

  27. A.D.P. Rao, B. Ramesh, P.R.M. Rao, S.B. Raju, J. Alloys Compd. 282, 268 (1999)

    Article  Google Scholar 

  28. M.U. Islam, T. Abbas, S.B. Niazi, Z. Ahmed, S. Sabeen, M.S. Chaudhry, Solid State Commun. 130, 353 (2004)

    Article  ADS  Google Scholar 

  29. N.M. Deraz, A. Alarif, Int. J. Electrochem. Sci. 7, 4585 (2012)

    Google Scholar 

  30. A. Verma, O.P. Thakur, C. Prakash, T.C. Geol, R.G. Mendirth, Mater. Sci. Eng. B 116, 1 (2005)

    Article  Google Scholar 

  31. K. Zak, Abd.W.H. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  32. J.M. Zhang, Y. Zhang, K.W. Xu, V. Ji, Solid State Commun. 139, 87 (2006)

    Article  ADS  Google Scholar 

  33. C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach (Plenum Press Publishing, New York, 1998)

    Book  Google Scholar 

  34. S. Harjo, Y. Tomota, S. Torii, T. Kamiyama, Mater. Trans. 43, 1696 (2002)

    Article  Google Scholar 

  35. N.M. Deraz, M.M.G. Fouda, Int. J. Electrochem. Sci. 8, 2756 (2013)

    Google Scholar 

  36. M.A. Amer, T. Meaz, M. Yehia, S.S. Attalah, F. Fakhry, J. Alloys Compd. 633, 448 (2015)

    Article  Google Scholar 

  37. S.A. Mazen, H.M. Zaki, S.F. Mansour, Int. J. Pure Appl. Phys. 3, 40 (2007)

    Google Scholar 

  38. R.D. Waldron, Phys. Rev. 99, 1727 (1995)

    Article  ADS  Google Scholar 

  39. K.B. Modi, P.Y. Raval, S.J. Shah, Inorg. Chem. 54, 1543 (2015)

    Article  Google Scholar 

  40. S.M. Patange, S.E. Shirsath, K.S. Lohar, S.G. Algude, S.R. Kamble, N. Kulkarni, D.R. Mane, K.M. Jadhav, J. Magn. Magn. Mater. 325, 107 (2013)

    Article  ADS  Google Scholar 

  41. K.B. Modi, J.D. Gajera, M.P. Pandya, H.G. Vora, H.H. Joshi, Pramana 62, 1173 (2004)

    Article  ADS  Google Scholar 

  42. S.M. Patange, S.E. Shirsath, S.P. Jadhav, J. Mol. Struct. 1038, 40 (2013)

    Article  ADS  Google Scholar 

  43. D. Ravinder, T. Alivelumanga, Mater. Lett. 37, 51 (1998)

    Article  Google Scholar 

  44. I.N. Frantsevich, F.F. Voronov, S.A. Bakuta, Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals (Naukova Dumka, Kiev, 1982)

    Google Scholar 

  45. K.B. Modi, J. Supercond. Nov. Magn. 29, 2287 (2016)

    Article  Google Scholar 

  46. N. Varalaxmi, K.V. Sivakumar, Ind. J. Appl. Res. 4, 537 (2014)

    Article  Google Scholar 

  47. O.L. Anderson, W.P. Mason (eds.), Physics Acoustics, vol. 3BC (Academic Press, New York, 1965)

    Google Scholar 

  48. V. Rathod, A.V. Anupama, V.M. Jali, V. Hiremath, B. Sahoo, Ceram. Int. 43, 14431 (2017)

    Article  Google Scholar 

  49. L.L. Xu, J. Zhang, F.G. Wang, K.D. Yuan, L.J. Wang, K. Wu, G.Q. Xu, W. Chen, RSC Adv. 5, 48256 (2015)

    Article  Google Scholar 

  50. H. Gao, H. Yang, S. Wang, D. Li, F. Wang, L. Fang, L. Lei, Y. Xiao, G. Yang, J. Sol. Gel. Sci. Technol. 86, 206 (2018)

    Article  Google Scholar 

  51. S. Suguna, S. Shankar, S.K. Jaganathan, A. Manikandan, J. Nanosci. Nanotechnol. 18, 1019 (2014)

    Article  Google Scholar 

  52. S. Sen, H. Konkel, S.J. Tight, L.G. Bland, S.R. Sharma, R.E. Taylor, J. Cryst. Growth 86, 111 (1988)

    Article  ADS  Google Scholar 

  53. S.H. Wemple, M. DiDomenico, Phys. Rev. Lett. 23, 1156 (1969)

    Article  ADS  Google Scholar 

  54. K. Tanaka, Thin Solid Films 66, 271 (1980)

    Article  ADS  Google Scholar 

  55. F. Oliva, L. Avalle, E. Santos, O. Camara, J. Photo Chem. Photo Biol. A. 146, 175 (2002)

    Article  Google Scholar 

  56. T.S. Moss, Optical Properties of Semiconductors (Butterworth’s Scientific Publication LTD., London, 1959)

    Google Scholar 

  57. E.M. Assim, J. Alloys Comput. 463, 55 (2008)

    Article  Google Scholar 

  58. S.A. Mahmoud, S. Alshomer, M.A. Tarawnh, J. Mod. Phys. 2, 1178 (2011)

    Article  Google Scholar 

  59. B. Yous, J.M. Berger, J.P. Ferraton, A. Donnadieu, Thin Solid Films 82, 279 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Laboratory support and laboratory facilities from Central Laboratory for Water and Environmental Technology Damanhour University Faculty of Science (CLWET), which has been accredited by EGAC in compliance with the requirements of ISO/IEC 17025;2005, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. El-Said Bakeer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Said Bakeer, D. Elastic study and optical dispersion characterization of Fe-substituted cobalt aluminate nanoparticles. Appl. Phys. A 126, 443 (2020). https://doi.org/10.1007/s00339-020-03625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03625-z

Keywords

Navigation