Skip to main content
Log in

Studies on anomalous dispersion behavior of PANI–CNT composites for enhanced shielding effectiveness in various microwave bands

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the anomalous dispersion behavior of polyaniline–carbon nanotube (PANI–CNT) composites for various microwave bands is presented. The anomalous dispersion behavior is experimentally verified by observing group delay characteristics using vector network analyzer. In an anomalous dispersive medium, the transmission coefficient is characterized by an advancement in phase, while for a normal medium, the transmission phase shows a gradual decrease. By closely observing this property, we can correlate different material property deviations associated with the anomalous dispersion region of the sample in various microwave bands. The samples of PANI–CNT, in their powder forms, are used for the study. PANI–CNT is normally exhibiting diverse material properties compared with the normal EMI shielding materials which are inevitable for shielding applications. In this paper, the effect of anomalous behavior on various material parameters like permittivity and shielding efficiency (SE) is studied. The advantage of anomalous dispersion is that the region is characterized by a significant enhancement of SE as compared to the existing EMI shielding materials used for microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.A. Kong, Electromagnetic Wave Theory (EMW Pub., Cambridge, 2000)

    Google Scholar 

  2. P.W. Milonni, Fast Light Slow Light and Left-Handed Light (Institute of Physics, Bristol, 2005)

    Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  4. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960)

    MATH  Google Scholar 

  5. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, New York, 1946)

    MATH  Google Scholar 

  6. C.G.B. Garrett, D.E. McCumber, Phys. Rev. A 1, 305 (1970)

    Article  ADS  Google Scholar 

  7. M. Mojahedi, E. Schamiloglu, F. Hegeler, K.J. Malloy, Time-domain detection of superluminal group velocity for single microwave pulses. Phys. Rev. 62, 4 (2000)

    Google Scholar 

  8. G.M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, R.W. Boyd, Observation of backward pulse propagation through a medium with a negative group velocity. Science 312, 895–897 (2006)

    Article  ADS  Google Scholar 

  9. A. Sommerfeld, The propagation of light in dispersing media. Ann. Phys. Berlin 44, 177–202 (1914)

    Article  ADS  Google Scholar 

  10. M.D. Stenner, D.J. Gauthier, M.A. Neifeld, The speed of information in a ‘fast light’ optical medium. Nature 425, 695–698 (2003)

    Article  ADS  Google Scholar 

  11. L. Brillouin, On the propagation of light in dispersing media. Ann. Phys. Berlin 44, 203–240 (1914)

    Article  ADS  Google Scholar 

  12. E.L. Bolda, J.C. Garrison, R.Y. Chiao, Optical pulse propagation at negative group velocities due to a nearby gain line. Phys. Rev. A Gen. Phys. 49, 2938–2947 (1994)

    Article  ADS  Google Scholar 

  13. S. Chu, S. Wong, Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738–741 (1982)

    Article  ADS  Google Scholar 

  14. L.J. Wang, A. Kuzmich, A. Dogariu, Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000)

    Article  ADS  Google Scholar 

  15. O.F. Siddiqui, M. Mojahedi, G.V. Eleftheriades, Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag. 51(10), 2619–2625 (2003)

    Article  ADS  Google Scholar 

  16. O.F. Siddiqui, S.J. Erickson, G.V. Eleftheriades, M. Mojahedi, Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials. IEEE Trans. Microw. Theory Tech. 52(5), 1449–1454 (2004)

    Article  ADS  Google Scholar 

  17. D. Solli, R.Y. Chiao, J.M. Hickmann, Superluminal effects and negative group delays in electronics, and their applications. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top 66, 056601–056604 (2002)

    Google Scholar 

  18. S. Keser, M. Mojahedi, Broadband negative group delay microstrip phase shifter design, in Proceedings IEEE AP-S International Symposium USNC/URSI National Radio Science Meeting, Charleston, SC, USA (2009), pp. 1–4

  19. S. Keser, M. Mojahedi, Removal of beam squint in series fed array antennas using abnormal group delay phase shifters, in Proceedings of IEEE Antennas Propagation Society International Symposium (APSURSI), Toronto, Canada (2010), pp. 1–4

  20. H. Mirzaei, G.V. Eleftheriades, Squint-free beam forming in series fed antenna arrays using synthesized non-foster elements, in Proceedings of IEEE Antennas Propagation Society International Symposium (APSURSI), Orlando, FL, USA (2013), pp. 2209–2210

  21. B. Ravelo, Investigation on the microwave pulse signal compression with NGD circuit. Prog. Electromagn. Res. C 20, 155–171 (2011)

    Article  Google Scholar 

  22. H. Choi, Y. Jeong, C.D. Kim, J.S. Kenney, Efficiency enhancement of feed forward amplifiers by employing a negative group-delay circuit. IEEE Trans. Microw. Theory Tech. 58(5), 1116–1125 (2010)

    Article  ADS  Google Scholar 

  23. P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications: A Practical Approach (Kluwer Academic, Dordrecht, 1999)

    Book  Google Scholar 

  24. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116, 13403–13412 (2012)

    Article  Google Scholar 

  25. T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds, Handbook of Conducting Polymers (Marcel Dekker, New York, 1998)

    Google Scholar 

  26. J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65, 2278–2280 (1994)

    Article  ADS  Google Scholar 

  27. P. Saini, V. Choudhary, S.K. Dhawan, Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in-situ polymerization. Polym. Adv. Technol. 23, 343–349 (2012)

    Article  Google Scholar 

  28. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)

    Article  Google Scholar 

  29. L.L. Wang, B.K. Tay, K.Y. See, Z. Sun, L.K. Tan, D. Lua, Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47, 1905–1910 (2009)

    Article  Google Scholar 

  30. G. Guanghua, C. Tahir, A.G. William, Energetic, structure, mechanical and vibrational properties of single walled carbon nano tubes. Nano Technol. 9, 184 (1998)

    ADS  Google Scholar 

  31. M. Moniruzzaman, K.I. Winey, Polymer nano composites containing carbon nano tubes. Macromolecules 39, 5194–5205 (2006)

    Article  ADS  Google Scholar 

  32. Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020)

    Article  Google Scholar 

  33. T. Pan, Y. Zhang, C. Wang, H. Gao, B. Wen, B. Yao, Mulberry-like polyaniline based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020)

    Article  Google Scholar 

  34. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline-MWCNT nano composites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Article  Google Scholar 

  35. B. Yuan, L. Yu, L. Sheng, K. An, X. Zhao, Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and grapheme sheet/polyaniline composites. J. Phys. D Appl. Phys. 45, 235108 (2012)

    Article  ADS  Google Scholar 

  36. K.H. Wu, T.H. Ting, G.P. Wang, W.D. Ho, C.C. Shih, Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nano composites. Polym. Degrad. Stab 93, 483–488 (2008)

    Article  Google Scholar 

  37. S. Joon, R. Kumar, A.P. Singh, R. Shukla, R.S. Dhawan, Fabrication and microwave shielding properties of free standing polyaniline–carbon fiber thin sheets. Mater. Chem. Phys 160, 87–95 (2015)

    Article  Google Scholar 

  38. M. Sabet, H. Jahangiri, E. Ghashghaei, Improving microwave absorption of the polyaniline by carbon nanotube and needle-like magnetic nanostructures. Synth. Met. 224, 18–26 (2017)

    Article  Google Scholar 

  39. Y. Wang, Du Yunchen, Xu Ping, R. Qiang, X. Han, Recent advances in conjugated polymer-based microwave absorbing materials. Polymers 9, 29 (2017)

    Article  Google Scholar 

  40. B.K. Sharma, N. Khare, R. Sharma, S.K. Dhawan, V.D. Vankar, H.C. Gupta, “Dielectric behavior of polyaniline–CNTs composite in microwave region. Compos. Sci. Technol. 69, 1932–1935 (2009)

    Article  Google Scholar 

  41. H. Qiu, J. Wang, S.H. Qi, Z. He, X. Fan, Y.Q. Dong, Microwave absorbing properties of multi-walled carbon nanotubes/polyaniline nano composites. J. Mater. Sci. Mater. Electron. 26, 564–570 (2015)

    Article  Google Scholar 

  42. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nano composites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Article  Google Scholar 

  43. S. Iijima, T. Ichihashi, Single shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  ADS  Google Scholar 

  44. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nano tubes-the route toward applications. Science 297, 787–792 (2002)

    Article  ADS  Google Scholar 

  45. J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, 921 (1997)

    Article  Google Scholar 

  46. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  47. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)

    Article  ADS  Google Scholar 

  48. S. Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Carbon nanotube quantum resistors. Science 280, 1744 (1998)

    Article  ADS  Google Scholar 

  49. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)

    Article  ADS  Google Scholar 

  50. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994)

    Article  ADS  Google Scholar 

  51. M. Qiu, Y. Zhang, B. Wen, Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J. Mater. Sci. Mater. Electron. 29, 10437–10444 (2018)

    Article  Google Scholar 

  52. T. David, J.K. Mathad, T. Padmavathi, A. Vanaja, Synthesis of polyaniline and carboxylic acid functionalized SWCNT composites for electromagnetic interference shielding coatings. Polymer 55, 5665–5672 (2014)

    Article  Google Scholar 

  53. E.J. Jelmy, S. Ramakrishnan, N.K. Kothurkar, Emi shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym. Adv. Technol. 27, 1246 (2016)

    Article  Google Scholar 

  54. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Article  Google Scholar 

  55. Y. Zhang, M. Qiu, Yu Ying, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core–shell hetero structure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9(1), 809–818 (2017)

    Article  Google Scholar 

  56. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, Chichester, 2004)

    Book  Google Scholar 

  57. S. Wang, M. Niu, D. Xu, A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe. IEEE Trans. Microw. Theory Tech. 46, 2145–2147 (1998)

    Article  ADS  Google Scholar 

  58. W. Barry, A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability. IEEE Trans. Microw. Theory Tech. MTT-34, 80–84 (1986)

    Article  ADS  Google Scholar 

  59. P. Queffelec, P. Gelin, J. Gieraltowski, J. Loaec, A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity. IEEE Trans. Magn. 30, 224–231 (1994)

    Article  ADS  Google Scholar 

  60. L. Yousefi, M.S. Boybay, O.M. Ramahi, Characterization of metamaterials using a strip line fixture. IEEE Trans. Antennas Propag. 59, 1245–1253 (2011)

    Article  ADS  Google Scholar 

  61. L. Yousefi, H. Attia, O.M. Ramahi, Broadband experimental characterization of artificial magnetic materials based on a microstrip line method. Prog. Electromagn. Res. 90, 1–13 (2009)

    Article  Google Scholar 

  62. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  63. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  64. X.-G. Sun, M. Gao, C. Li, Y. Wu, Microwave Absorption Characteristics of Carbon Nanotubes (Nanchang University, Sun Nanotech Co Ltd China, Nanchang, 2010)

    Google Scholar 

  65. X.-Y. Fang, X.-X. Yu, H.-M. Zheng, H.-B. Jin, L. Wang, M.-S. Ca, Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379, 2245–2251 (2015)

    Article  ADS  Google Scholar 

  66. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)

    Article  Google Scholar 

  67. W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nano composite on temperature ranging from 373 to 873 K in-band. Appl. Phys. Lett. 94, 233110 (2009)

    Article  ADS  Google Scholar 

  68. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  Google Scholar 

  69. T. Chen, Z. Ni, T. Zhang, A calibration method of absolute time delay for phased array antenna. J. Phys. Conf. Ser. 1087, 042046 (2018)

    Article  Google Scholar 

  70. P. Stenlus, B. York, on the propagation of transients in waveguides. IEEE Antennas Propag. Mag. 37, 39–44 (1995)

    Article  ADS  Google Scholar 

  71. S.C. Cripps, Waving back. IEEE Microw. Mag. 11, 20–32 (2010)

    Google Scholar 

  72. O.F. Siddiqui, M. Mojahedi, G.V. Eleftheriades, Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag. 51, 2619–2625 (2003)

    Article  ADS  Google Scholar 

  73. S.V. Pushpakaran, J.M. Purushothama, M. Mani, A. Chandroth, M. Pezholil, V. Kesavath, A metamaterials absorber based high gain directional dipole antenna. Int. J. Microw. Wirel. Technol. 10, 430–436 (2018)

    Article  Google Scholar 

  74. S.A. Schelkunoff, Electromagnetic Waves (Van Nostrand, Princton, NJ, 1945)

    Google Scholar 

  75. S.P. Sasikumar, V.A. Libimol, D.M. George, A.O. Lindo, N.K. Pushkaran, H. John, C.K. Aanandan, Electromagnetic interference shielding efficiency enhancement of the PANI-CSA films at broad band frequencies. Prog. Electromagn. Res. M 57, 163–174 (2017)

    Article  Google Scholar 

  76. M. Qiu, Yu Ying, B. Wen, L. Cheng, Y. Zhang, A novel polyaniline-coated bagasse fiber composite with core–shell hetero structure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9, 809–818 (2017)

    Article  Google Scholar 

  77. X.-G. Sun, M. Gao, C. Li, Wu Yiqiang, Microwave Absorption Characteristics of Carbon Nanotubes (Nanchang University, Sun Nanotech Co Ltd China, Nanchang, 2010)

    Google Scholar 

  78. Y. Zhang, Z. Yang, Yu Ying, BianYing Wen, Y. Liu, M. Qiu, Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline hetero structure. ACS Appl. Polym. Mater. 1(4), 737–745 (2019)

    Article  Google Scholar 

  79. Z. Yang, Y. Zhang, B. Wen, Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design. Compos. Sci. Technol. 178, 41–49 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University Grants Commission and Department of Science and Technology, Govt. Of India. The authors would like to thank Maharaja’s College, Ernakulum, Department of applied Chemistry, CUSAT and International School of Photonics, CUSAT for their Technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Sreekala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekala, P.S., John, H. & Aanandan, C.K. Studies on anomalous dispersion behavior of PANI–CNT composites for enhanced shielding effectiveness in various microwave bands. Appl. Phys. A 126, 389 (2020). https://doi.org/10.1007/s00339-020-03583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03583-6

Keywords

Navigation