Skip to main content
Log in

Synthesis and enhanced luminescence properties of CuS@YF3:Eu core–shell nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The rare earth luminescent nanoparticles are regarded as one of the most ideal fluorescent probes. In order to solve the problem of insufficient luminescence intensity of rare earth luminescent imaging materials, a new core–shell-structured CuS@YF3:Eu with strong luminescent nanoparticles was successfully prepared. The nanoparticles possessed stronger luminescent property than individually dispersed YF3:Eu nanoparticles that it is attributed to the plasmon-enhanced localized electric fields effect of the interface of CuS and YF3:Eu nanoparticles. This work provides insight on the development of nonmetallic plasmon-sensitized optical materials and to promote their application in the diagnosis and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.H. Zhao, J. Yang, R.X. Xia, Chem. Commun. 54, 527–531 (2018)

    Article  Google Scholar 

  2. M. Darbandi, T. Nann, Chem. Commun. 7(7), 776–778 (2006)

    Article  Google Scholar 

  3. J. Choi, J.C. Kim, Y.B. Lee, I.S. Kim, Y.K. Park, N.H. Hur, Chem. Commun. 16, 1644–1646 (2007)

    Article  Google Scholar 

  4. Z. Zhang, L. Yang, Y.R. Fang, Adv. Sci. 180, 0748–0756 (2018)

    Google Scholar 

  5. H.X. Peng, B. Cui, Y.S. Wang, Sci. Adv. Mater. 6, 1–6 (2014)

    Article  ADS  Google Scholar 

  6. H.X. Peng, B. Cui, Y.S. Wang, Mat Sci Eng C. 46, 253–263 (2015)

    Article  Google Scholar 

  7. D.Q. Yin, Y. Liu, C.C. Dun, Nanoscale. 10(5), 2533–2539 (2018)

    Article  Google Scholar 

  8. C. Li, Y. Zhang, G. Chen, Adv. Mater. 29, 1605754–1605760 (2017)

    Article  Google Scholar 

  9. K. Cheng, H. Chen, C.H. Jenkins, ACS Nano 11, 12276–12281 (2017)

    Article  Google Scholar 

  10. J. Tang, K. Lu, S. Zhang, Optical Mater. 54, 160–168 (2016)

    Article  ADS  Google Scholar 

  11. X. Chen, D.L. Zhou, W. Xu, Sci. Rep. 7, 41079–41086 (2017)

    Article  ADS  Google Scholar 

  12. J. Jadhav, S. Biswas, Superlattice. Microst. 91, 8–15 (2016)

    Article  ADS  Google Scholar 

  13. S.H. Zhang, C.X. Sun, J.F. Zeng, Adv. mater. 28(40), 8927–8935 (2016)

    Article  Google Scholar 

  14. Y.X. Zhao, H.C. Pan, Y.B. Lou, JACS 131(12), 4253–4259 (2009)

    Article  Google Scholar 

  15. X. Liu, C.H. Lee, W.C. Law, Nano Lett. 13(9), 4333–4340 (2013)

    Article  ADS  Google Scholar 

  16. R. Alam, M. Labine, C.J. Karwacki, ACS Nano 10(2), 2880–2888 (2016)

    Article  Google Scholar 

  17. M.Q. Wei, X. Lin, H.C. Liu, Chemical Reagents 42(3), 1–6 (2020)

    Google Scholar 

  18. H.X. Peng, G.X. Liu, J. Alloy. Compd. 509, 6930–6934 (2011)

    Article  Google Scholar 

  19. L.Q. Fan, New Chemical Materials 40(6), 46–48 (2012)

    Google Scholar 

  20. P. Rahman, M. Green, Nanoscale 1, 214–224 (2009)

    Article  ADS  Google Scholar 

  21. Z. Zhang, J. Huang, Y. Fang, Adv. Mater. 29, 1606688–1606695 (2017)

    Article  Google Scholar 

  22. J. Yan, T. Wang, G. Wu, Adv. Mater. 27, 1580–1588 (2015)

    Article  Google Scholar 

  23. A. Mishra, Y. Jiang, S. Roberts, Anal. Chem. 88, 10785–10790 (2016)

    Article  Google Scholar 

  24. C.J. Reinhardt, J. Chan, Biochemistry 57, 194–200 (2018)

    Article  Google Scholar 

  25. Z. Yin, H. Li, W. Xu, Adv. Mater. 28, 2518–2525 (2016)

    Article  Google Scholar 

  26. D. Zhou, D. Liu, W. Xu, ACS Nano 10, 5169–5176 (2016)

    Article  Google Scholar 

  27. F. Hu, D. Mao, Kenry. Adv. Funct. Mater. 28, 1707519–1707525 (2018)

    Article  Google Scholar 

  28. X. Liu, D.Y. Lei, Sci. Rep. 5, 15235–15240 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51704116); Hunan Province Natural Science Foundation of China (Grant No. 2018JJ3252); the Scientific Research Project of Hunan Province Department of Education (19A264); the Planned Science and Technology Project of Hunan Province, China (Grant No. 2016TP1028); the Double First-Class Discipline Construction Program of Hunan Province; and China Postdoctoral Science Foundation (Grant No. 2017 M 612582).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Peng or Jun Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Our study did not require an ethical board approval because it did not contain human or animal trials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Peng, H., Peng, Y. et al. Synthesis and enhanced luminescence properties of CuS@YF3:Eu core–shell nanoparticles. Appl. Phys. A 126, 385 (2020). https://doi.org/10.1007/s00339-020-03572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03572-9

Keywords

Navigation