Skip to main content
Log in

Experimental determination of the Ni–Ni5Zr eutectic point for binary Ni–Zr alloy phase diagram

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Ni–Ni5Zr eutectic alloy becomes a promising structural material owing to its high strength and desirable plasticity. However, those nominal eutectic alloys with previously assumed compositions of Ni-8.8 at.% Zr and Ni-9.0 at.% Zr were found to involve a considerable amount of primary (Ni) phase. Hereby, an experimental study was conducted by differential scanning calorimetry and careful electron microscopy to clarify the situation. A total of 13 alloys in the composition range of 8.8 ~ 11.0 at.% Zr were explored with respect to their phase transition temperatures and microstructure evolution characteristics. The Ni-9.9 at.% Zr alloy exhibited primary (Ni) phase, whereas the Ni-10.1 at.% Zr alloy displayed primary Ni5Zr phase. Finally, the eutectic point was determined as Ni-10.0 at.% Zr alloy with a transition temperature of 1467 K, and the relevant part of Ni–Zr phase diagram was revised accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. S.Q. Zhou, O. Mokhtari, M.G. Rafique, V.C. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloy. Compd. 765, 1243–1252 (2018)

    Article  Google Scholar 

  2. E. Charalampopoulou, N. Cautaerts, T. Van der Donck, D. Schryvers, K. Lambrinou, R. Delville, Scr. Mater. 167, 66–70 (2019)

    Article  Google Scholar 

  3. S.B. Luo, W.L. Wang, J. Chang, Z.C. Xia, B. Wei, Chem. Phys. Lett. 679, 172–175 (2017)

    Article  ADS  Google Scholar 

  4. C. Clopet, R. Cochrane, A. Mullis, Appl. Phys. Lett. 102, 031906 (2013)

    Article  ADS  Google Scholar 

  5. D. Geng, W. Xie, B. Wei, Appl. Phys. A 109, 239–244 (2012)

    Article  ADS  Google Scholar 

  6. Y. He, J. Li, J. Wang, H. Kou, E. Beagunon, Appl. Phys. A 123, 391 (2017)

    Article  ADS  Google Scholar 

  7. C. Tiwary, D. Roy Mahapatra, K. Chattopadhyay, Appl. Phys Lett. 101, 171901 (2012)

    Article  ADS  Google Scholar 

  8. X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141, 59–66 (2017)

    Article  Google Scholar 

  9. C. Wei, Y. Liu, L. Yu, R. Xu, K. Yang, Z. Gao, Appl. Phys. A 95, 409–413 (2009)

    Article  ADS  Google Scholar 

  10. T. Maity, A. Singh, A. Dutta, J. Das, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 666, 72–79 (2016)

    Article  Google Scholar 

  11. P. Lü, H.P. Wang, Scr. Mater. 137, 31–35 (2017)

    Article  ADS  Google Scholar 

  12. J.M. Park, T.E. Kim, S.W. Sohn, D.H. Kim, K.B. Kim, W.T. Kim, J. Eckert, Appl. Phys. Lett. 93, 031913 (2008)

    Article  ADS  Google Scholar 

  13. T. Maity, J. Das, Intermetallics 63, 51–58 (2015)

    Article  Google Scholar 

  14. H. Wang, P. Lü, X. Cai, B. Zhai, J. Zhao, B. Wei, Mater. Sci. Eng., A 772, 138660 (2020)

    Article  Google Scholar 

  15. Y. Lu, L.A. Godlewski, J.W. Zindel, A. Lee, J. Mater. Sci. 54, 12818–12832 (2019)

    Article  ADS  Google Scholar 

  16. H. Okamoto, T. Massalski, ASM International, Materials Park (OH, USA, 1990)

    Google Scholar 

  17. T. Tokunaga, S. Matstnnoto, H. Ohtani, M. Hasebe, Mater. Trans. 48, 2263–2271 (2007)

    Article  Google Scholar 

  18. N. Wang, C. Li, Z. Du, F. Wang, Calphad-Comput. Coupling Ph. Diagr. Thermochem. 31, 413–421 (2007)

    Article  Google Scholar 

  19. N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, O. Semenova, M. Materials Science International Team, in: G. Effenberg ed., MSI Materials Science International Services GmbH, 2015

Download references

Acknowledgments

The authors are grateful to Mr. C.H. Zheng, Mr. B. Zhai, Mr. Z.C. Luo and Mr. C. Liang for their help.

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51734008 and 51327901), the National Key R&D Program of China (Grant No. 2018YFB2001800) and the Shannxi Key Industry Chain Program (Grant No. 2019ZDLGY05-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, H.P., Geng, D.L. et al. Experimental determination of the Ni–Ni5Zr eutectic point for binary Ni–Zr alloy phase diagram. Appl. Phys. A 126, 375 (2020). https://doi.org/10.1007/s00339-020-03569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03569-4

Keywords

Navigation