Skip to main content
Log in

Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper discusses the mechanisms of laser-induced periodic surface structures (LIPSS) formation using a high repetition rate femtosecond laser beam irradiation of magnetron-sputtered titanium oxide thin films (TiO1.8) grown onto SiO2/Si substrates. An Yb:YKW 500 fs linearly polarized laser emitting at a wavelength, λ, of 1030 nm, was used to irradiate the films (300 nm thickness) at a repetition rate of 100 kHz under both static and dynamic (scanning) conditions. Under static beam conditions, an incubation behavior related to materials in thin film form was established with a damage threshold of 72 mJ/cm2. Close to this fluence value and increasing the number of laser shots from 1 to 1000, micro-cracking occurred and propagated inside the beam waist diameter zone estimated close to 60 µm. In addition, using a higher fluence value of 280 mJ/cm2, i.e., well above the damage threshold, a melting occurred in an intermediate zone within the irradiated area, with a surprising ‘cure effect’ that contributes to the micro-cracks stabilization. Simultaneously, at the center of the Gaussian laser beam spot, the entire film ablation was observed. Furthermore, irradiation under dynamic mode with a scanning speed of 4 mm/s and a repetition rate of 100 kHz were achieved for the large-scale processing of the TiO1.8 films up to surface area of 25 × 25 mm2. For these irradiation conditions case that correspond to a fluence of 110 mJ/cm2 and a cumulative number of shots of 3000, 2D-LIPSS nano-cracks (200 nm length and λ/8 to λ/9 period) are obtained over the whole irradiated surface, a phenomenon that is mainly attributed to a thermo-mechanical ablation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, J. Appl. Phys. 112(1), 014901 (2012). https://doi.org/10.1063/1.4730902

    Article  ADS  Google Scholar 

  2. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Surf. Sci. 278, 7–12 (2013). https://doi.org/10.1016/j.apsusc.2012.10.188

    Article  ADS  Google Scholar 

  3. A.V.D. Ostovalov, V.P.K. Orolkov, K.A.O. Kotrub, B. Ronnikov, S.A.B. Abin, Op. Ex. 26(6), 7712–7723 (2018). https://doi.org/10.1364/OE.26.007712

    Article  Google Scholar 

  4. T.J.Y. Derrien, R. Koter, J. Krüger, S. Hohm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014). https://doi.org/10.1063/1.4887808

    Article  ADS  Google Scholar 

  5. T.T.D. Huynh, A. Petit, N. Semmar, App. Surf. Sci. 302, 109–113 (2014). https://doi.org/10.1016/j.apsusc.2013.10.172

    Article  ADS  Google Scholar 

  6. F.A. Müller, C. Kunz, S. Gräf, Materials 9, 476 (2016). https://doi.org/10.3390/ma9060476

    Article  ADS  Google Scholar 

  7. A.Y. Vorobyev, C. Guo, Laser Photon. Rev. 7(3), 385–407 (2013). https://doi.org/10.1002/lpor.201200017

    Article  ADS  Google Scholar 

  8. A.H.A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling, Sci. Rep. 8, 10112 (2018). https://doi.org/10.1038/s41598-018-28454-2

    Article  ADS  Google Scholar 

  9. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, F. Ömer Ilday, Nature. Photon. 7, 897–901 (2013). https://doi.org/10.1038/nphoton.2013.272

    Article  ADS  Google Scholar 

  10. A.G. Kovačević, S. Petrović, V. Lazović, D. Peruško, D. Pantelić, B.M. Jelenković, App. Surf. Sci. 417, 155–159 (2017). https://doi.org/10.1016/j.apsusc.2017.03.141

    Article  ADS  Google Scholar 

  11. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Proceedings of SPIE Conference on High-Power Laser Ablation VII 7005, 70052L (2008). https://doi.org/10.1117/12.782937

  12. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82(25), 4462–4464 (2003). https://doi.org/10.1063/1.1586457

    Article  ADS  Google Scholar 

  13. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 186(1–4), 352–357 (2002). https://doi.org/10.1016/S0169-4332(01)00675-4

    Article  ADS  Google Scholar 

  14. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012). https://doi.org/10.1103/PhysRevB.86.115316

    Article  ADS  Google Scholar 

  15. M. Straub, M. Afshar, D. Feili, H. Seidel, K. König, J. Appl. Phys. 111, 124315 (2012). https://doi.org/10.1063/1.4730381

    Article  ADS  Google Scholar 

  16. J.F. Young, J.S. Preston, H.M. Van Driel, J.E. Sipe, Phys. Rev. B 27, 1155–1172 (1983). https://doi.org/10.1103/PhysRevB.27.1155

    Article  ADS  Google Scholar 

  17. O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, 2015 in Progress in Nonlinear Nano-Optics. Nano-Optics and Nanophotonics, ed. by S. Sakabe, C. Lienau, R. Grunwald (Springer, Berlin). doi 10.1007/978-3-319-12217-5_1

  18. D. Scorticati, G.-W.R.B.E. Römer, D.F. de Lange, B. Huis in’t Veld, J. Nanophotonics 6(1), 063528 (2012). https://doi.org/10.1117/1.JNP.6.063528

    Article  ADS  Google Scholar 

  19. Z. Zhou, W. Ma, Thin Solid Films 519(22), 7940–7946 (2011). https://doi.org/10.1016/j.tsf.2011.05.062

    Article  ADS  Google Scholar 

  20. T.T.D. Huynh, N. Semmar, Appl. Phys. A 116, 1429–1435 (2014). https://doi.org/10.1007/s00339-014-8255-0

    Article  ADS  Google Scholar 

  21. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  ADS  Google Scholar 

  22. I. Vaiciulis, M. Girtan, A. Stanculescu, L. Leontie, F. Habelhames, S. Antohe, Proc. Rom. Acad. Ser. A 13(4), 335–342 (2012)

    Google Scholar 

  23. A. Talbi, C. Tchiffo-Tameko, A. Stolz, E. Millon, C. Boulmer-Leborgne, N. Semmar, Appl. Surf. Sci. 418B, 425–429 (2017). https://doi.org/10.1016/j.apsusc.2017.02.033

    Article  ADS  Google Scholar 

  24. A. Talbi, P. Coddet, M. Tabbal, A.-L. Thomann, E. Millon, A. Stolz, C. Boulmer-Leborgne, G.M. O'Connor, N. Semmar, Appl. Surf. Sci. 476, 303–307 (2019). https://doi.org/10.1016/j.apsusc.2019.01.069

    Article  ADS  Google Scholar 

  25. C. McDonell, D. Milne, C. Prieto, H. Chan, D. Rostohar, G.M. O’Connor, Appl. Surf. Sci. 359, 567–575 (2015). https://doi.org/10.1016/j.apsusc.2015.10.019

    Article  ADS  Google Scholar 

  26. R. Benocci, D. Batani, H.E. Roman, Appl. Phys. B 125, 22 (2010). https://doi.org/10.1007/s00340-019-7132-0

    Article  ADS  Google Scholar 

  27. F. Kiel, N.M. Bulkakova, A. Ostendorf, E.L. Gurevich, Phys. Rev. Applied 11, 024038 (2019). https://doi.org/10.1103/PhysRevApplied.11.024038

    Article  ADS  Google Scholar 

  28. P.-A. Cormier, A. Balhamri, A.-L. Thomann, R. Dussart, N. Semmar, T. Lecas, R. Snyders, S. Konstantinidis, Surf. Coat. Technol. 254, 291–297 (2014). https://doi.org/10.1016/j.surfcoat.2014.06.037

    Article  Google Scholar 

  29. A. Talbi, Ph.D. thesis, University of Orleans (2017), https://tel.archives-ouvertes.fr/tel-01952834/document

  30. J.M. Liu, Opt. Lett. 7(5), 196–198 (1982). https://doi.org/10.1364/OL.7.000196

    Article  ADS  Google Scholar 

  31. D. Douti, L. Gallais, M. Commandré, Opt. Eng. 53(12), 122509 (2014). https://doi.org/10.1117/1.OE.53.12.122509

    Article  ADS  Google Scholar 

  32. D. N. Nguyen, L. A. Emmert, M. Mero, W. Rudolph, Proceedings of SPIE Conference on Laser-Induced Damage in Optical Materials 7132, 71320N (2008). http://dx.doi.org/10.1117/12.804452

  33. M. Mero, B.R. Clapp, J.C. Jasapara, W.G. Rudolph, D. Ristau, K. Starke, J. Krüger, S. Martin, W. Kautek, Opt. Eng. 44(5), 051107 (2005). https://doi.org/10.1117/1.1905343

    Article  ADS  Google Scholar 

  34. J. Bonse, P. Rudolph, J. Krüger, S. Baudach, W. Kautek, Appl. Surf. Sci. 154–155, 659–663 (2000). https://doi.org/10.1016/S0169-4332(99)00481-X

    Article  ADS  Google Scholar 

  35. G. Miyaji, K. Miyazaki, Opt. Express 16(20), 16265–16271 (2008). https://doi.org/10.1364/OE.16.016265

    Article  ADS  Google Scholar 

  36. F. Liang, R. Vallée, S.L. Chin, Opt. Mater. Express 2(7), 1244–1250 (2012). https://doi.org/10.1364/OME.2.000900

    Article  ADS  Google Scholar 

  37. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150(1–4), 101–106 (1999). https://doi.org/10.1016/S0169-4332(99)00228-7

    Article  ADS  Google Scholar 

  38. A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T. Itina, Sci. Rep 7, 12306 (2017). https://doi.org/10.1038/s41598-017-12502-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the region ‘Centre-Val-de-Loire’ and the doctoral school ‘ED-EMSTU’ for supporting this work via the ‘PIA Tours 2015′ National Project, and the PhD students’ grants. MT would like to thank the ‘University of Orleans’ and the ‘SAFAR program’ for a fellowship held during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Millon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talbi, A., Semmar, N., Tabbal, M. et al. Femtosecond laser irradiation of titanium oxide thin films: accumulation effect under IR beam. Appl. Phys. A 126, 390 (2020). https://doi.org/10.1007/s00339-020-03568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03568-5

Keywords

Navigation