Skip to main content

Production of Polonium-208, 209 and 210 for use in nuclear battery via particle accelerator

Abstract

Nuclear reaction processes are used for the production of energetic 208,209,210Po nuclei from Pb and Bi targets with particle accelerators, instead of the production with a nuclear reactor, for use in the nuclear battery and radioisotope thermoelectric generator technologies. The cross-section curves, simulated activity and yields of product of each reaction process were calculated under particular conditions, including 24 h of irradiation with a particle beam current of 1 mA for the energy range Eparticle = 200 → 1 MeV. Based on the calculated and simulated results, to produce 208,209,210Po nuclei, the appropriate target nuclei, nuclear reaction processes, and energy region of reactions were discussed by comparing the obtained results with the experimental data of literature and TENDL database in detail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. O. Artun, A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery. Mod. Phys. Lett. A 32(22), 1750117 (2017)

    ADS  Article  Google Scholar 

  2. O. Artun, Investigation of the production of 147Pm via particle accelerator. Indian. J. Phy. 91(8), 909–914 (2017)

    ADS  Article  Google Scholar 

  3. O. Artun, Investigation of the production of Cobalt-60 via particle accelerator. Nucl. Technol. Radiat. Prot. 32(4), 327–333 (2017)

    Article  Google Scholar 

  4. O. Artun, The (n, γ) reaction productions of 35S, 42Ar, 45Ca, 63Ni, 85Kr, 89Sr, 113mCd, 121m, 123Sn, 147Pm, 151Sm, 152,154,155Eu, 170,171Tm, 185,188W, 194Os, 204Tl, 210Po, 227Ac, 242,244Cm radio isotopes for using in nuclear battery via phenomenological and microscopic level density models. Int. J. Mod. Phys. E 28(8), 1950057 (2019)

    ADS  Article  Google Scholar 

  5. R.G. Lange, W.P. Carroll, Review of recent advances of radioisotope power systems. Energy Convers. Manag. 49, 393–401 (2008)

    Article  Google Scholar 

  6. G.L. Bennett, Mission interplanetary: using radioisotope power to explore the solar system. Energy Convers. Manage. 49, 382–392 (2008)

    Article  Google Scholar 

  7. S. Y. F. Chu, L. P. Ekström and R. B. Firestone, http://nucleardata.nuclear.lu.se/toi/index.asp (1999)

  8. B.C. Blanke, J.H. Birden, K.C. Jordan, E.H. Murphy, Nuclear battery-thermocouple type summary report (United State atomic energy commission, mound laboratory, Miamisburg, 1962)

    Google Scholar 

  9. O. Artun, Estimation of the production of medical 225Ac on thorium material via proton accelerator. Appl. Radiat. Isot. 127, 166–172 (2017)

    Article  Google Scholar 

  10. A. Koning et al., User Manual Talys 1.9, (2017). http://www.talys.eu/downloadtalys/. Accessed 20 Feb 2020

  11. O. Artun, Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy. Appl. Radiat. Isot. 144, 64–79 (2019)

    Article  Google Scholar 

  12. O. Artun, Calculation of productions of PET radioisotopes via phenomenological level density models. Rad. Phys. Chem. 149, 73–83 (2018)

    ADS  Article  Google Scholar 

  13. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965)

    ADS  Article  Google Scholar 

  14. W. Luo, D.L. Balabanski, D. Filipescu, A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. Nucl. Sci. Tech. 27, 113 (2016)

    Article  Google Scholar 

  15. O. Artun, Calculation of the mass stopping powers of medical, chemical, and industrial compounds and mixtures. Nucl. Technol. Radiat. Prot. 32(4), 356–362 (2018)

    Article  Google Scholar 

  16. O. Artun, X-particle the mass stopping. Power, X-PMSP Version 2.00 (2019). https://www.x-pmsp.com

  17. O. Artun, Investigation of production of medical 82Sr and 68Ge for 82Sr/82Rband 68Ge/68Ga generators via proton accelerator. Nucl. Sci. Tech. 29, 137 (2018)

    Article  Google Scholar 

  18. Tendl (2017), TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl 2017/tendl2017.html

  19. R. Bimbot et al., Study of the mechanism of nuclear reactions induced by alpha particles high energy. Journal de Physique 30, 513 (1969)

    Article  Google Scholar 

  20. N.E. Scott et al., A comparison of reactions induced by medium-energy 3He and 4He ions in heavy target nuclei. Nucl. Phys. A 119(1), 131–145 (1968)

    ADS  Article  Google Scholar 

  21. A.V. Gonchar et al., Integral cross sections for (d, xn) and (d, pxn) reactions on 209Bi nuclei at deuteron energy range to 47 MeV. Izv. Rossiiskoi Akademii Nauk Ser. Fiz 58(5), 81 (1994)

    Google Scholar 

  22. W.J. Ramler et al., Excitation functions of bismuth and lead. Phys. Rev. 114, 154 (1959)

    ADS  Article  Google Scholar 

  23. E.L. Kelly, E. Segre, Some excitation functions of bismuth. Phys. Rev. 75, 999 (1949)

    ADS  Article  Google Scholar 

  24. D.H. Templeton et al., Artificia1 radioactive Isotopes of Polonium. Phys. Rev. 72, 758 (1947)

    ADS  Article  Google Scholar 

  25. T.E. Ward et al., Radiochemical study of the combined (p, pi0) and (p, gamma) reactions on bismuth with protons from 62 to 480 MeV. Phys. Rev. C 24, 588 (1981)

    ADS  Article  Google Scholar 

  26. K. Miyano, H. Nakahara, The cross section and the recoil range study of the 209Bi(p, n) and (p, 2n) reactions. J. Phys. Soc. Jpn. 35(4), 953–956 (1973)

    ADS  Article  Google Scholar 

  27. P.J. Daly, P.F.D. Shaw, Radiative proton capture cross-sections in heavy nuclei. Nucl. Phys. 56, 322–330 (1964)

    Article  Google Scholar 

  28. C.G. Andre et al., Proton cross sections of 209Bi. Phys. Rev. 101, 645 (1956)

    ADS  Article  Google Scholar 

  29. Exfor, Experimental Nuclear Reaction Data, (2019). https://www-nds.iaea.org/exfor/

  30. A. Budzanowski et al., Elastic scattering and total reaction cross-sections for the interaction of 128 MeV deuterons with 12C, 58Ni, 60Ni and 209Bi nuclei. Nucl. Phys. 49, 144–160 (1963)

    Article  Google Scholar 

  31. K. Miyano et al., The (p, n) reaction on 209Bi and pre-compound process. J. Phys. Soc. Jpn. 45, 1071 (1978)

    ADS  Article  Google Scholar 

  32. J. Wing, J.R. Huizenga, (p, n) Cross Sections of 51V, 52Cr, 63Cu, 65Cu, 107Ag, 109Ag, 111Cd, 114 Cd, and 139La from 5 to 105 MeV. Phys. Rev. 128, 280 (1962)

    ADS  Article  Google Scholar 

  33. S.M. Lukyanov et al., Study of the 2n-evaporation channel in the 4,6He + 206,208Pb reactions. Phys. Lett. B 670, 321 (2009)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Artun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artun, O. Production of Polonium-208, 209 and 210 for use in nuclear battery via particle accelerator. Appl. Phys. A 126, 386 (2020). https://doi.org/10.1007/s00339-020-03557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03557-8

Keywords

  • Nuclear battery
  • Radioisotope generator
  • Particle accelerator
  • Energy
  • Polonium