Skip to main content
Log in

Unraveling optimized parameters for phase pure rhombohedral perovskite bismuth ferrite without leaching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth ferrite (BiFeO3 or BFO in short), one of the very promising multi-ferroic materials possessing a rhombohedrally distorted perovskite structure, has been synthesized using conventional solid-state reaction method. Eight sets of samples were prepared by varying initial synthesis parameters. Effects of precursors' grinding time, heating rate, quenching rate and sintering temperature on the phase, structural and spectral properties of obtained materials were systematically studied using XRD, FTIR and Rietveld methods. The results revealed that the optimal condition to obtain pure-phase BiFeO3 is using preheated furnace with sintering at 1073 K and then quenching in air for rapid cooling with intermediate grinding time of 3 h. Rietveld analysis applied on the X-ray diffraction data via Fullprof software indicated around 97% purity of the sample with the above-mentioned conditions. Deviation from the above temperature or grinding time or quenching rate leads to an increase in the phase fractions of Bi2Fe4O9 and Bi25FeO40 which are the major secondary phases formed during the synthesis of bismuth ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  3. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  4. M. Liao, X.L. Zhong, J.B. Wang, Y.C. Zhou, H. Liao, Scr. Mater. 58, 715 (2008)

    Article  Google Scholar 

  5. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  ADS  Google Scholar 

  6. J.S. Jang, S.J. Hong, J.S. Lee, P.H. Borse, O.S. Jung, T.E. Hong, E.D. Jeong, M.S. Won, H.G. Kim, J. Korean Phys. Soc. 54, 204 (2009)

    Article  ADS  Google Scholar 

  7. E. Mostafavi, A. Ataie, M. Ahmadzadeh, Adv. Mater. Res. 829, 683–687 (2014)

    Article  Google Scholar 

  8. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  9. C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  ADS  Google Scholar 

  10. V.A. Khomchenko, I.O. Troyanchuk, T.M.R. Maria, D.V. Karpinsky, S. Das, V.S. Amaral, J.A. Paixão, J. Appl. Phys. 112, 064105 (2012)

    Article  ADS  Google Scholar 

  11. C.M. Raghavan, D. Do, J.W. Kim, W.J. Kim, S.S. Kim, J. Am. Ceram. Soc. 95, 1933 (2012)

    Article  Google Scholar 

  12. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

    Article  ADS  Google Scholar 

  13. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  ADS  Google Scholar 

  14. Y.H. Lee, J.M. Wu, C.H. Lai, Appl. Phys. Lett. 88, 1 (2006)

    Google Scholar 

  15. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  16. R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012)

    Article  Google Scholar 

  17. A.K. Ghosh, G.D. Dwivedi, B. Chatterjee, B. Rana, A. Barman, S. Chatterjee, H.D. Yang, Solid State Commun. 166, 22 (2013)

    Article  ADS  Google Scholar 

  18. M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003)

    Article  Google Scholar 

  19. A.Z. Simões, F.G. Garcia, C.S. Riccardi, J. Alloys Compd. 493, 158–162 (2010)

    Article  Google Scholar 

  20. D. Maurya, H. Thota, K.S. Nalwa, A. Garg, J. Alloys Compd. 477, 780 (2009)

    Article  Google Scholar 

  21. K.L. Yadav, J. Nanosci. Nanotechnol. 11, 2682 (2011)

    Article  Google Scholar 

  22. Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, D. Xiao, J. Alloys Compd. 546, 57 (2013)

    Article  Google Scholar 

  23. S. Basu, S.K.M. Hossain, D. Chakravorty, M. Pal, Curr. Appl. Phys. 11, 976 (2011)

    Article  ADS  Google Scholar 

  24. J. Zhao, X. Zhang, S. Liu, W. Zhang, Z. Liu, J. Alloys Compd. 557, 120 (2013)

    Article  Google Scholar 

  25. T. Murtaza, I.A. Salmani, J. Ali, M.S. Khan, J. Mater. Sci. Mater. Electron. 29, 5110 (2018)

    Article  Google Scholar 

  26. H. Miao, Q. Zhang, G. Tan, G. Zhu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 23, 507 (2008)

    Article  Google Scholar 

  27. G. Biasotto, A. Simões, C. Foschini, S. Antônio, M. Zaghete, J. Varela, Process. Appl. Ceram. 5, 171 (2011)

    Article  Google Scholar 

  28. H.M. Hashem, M.H. Hamed, Mater. Chem. Phys. 211, 445 (2018)

    Article  Google Scholar 

  29. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  ADS  Google Scholar 

  30. D.C. Arnold, K.S. Knight, F.D. Morrison, P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009)

    Article  ADS  Google Scholar 

  31. T.T. Carvalho, P.B. Tavares, Mater. Lett. 62, 3984 (2008)

    Article  Google Scholar 

  32. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  33. H.M. Rietveld, Phys. Scr. 89, 098002 (2014)

    Article  ADS  Google Scholar 

  34. D.L. Bish, S.A. Howard, J. Appl. Crystallogr. 21, 86 (1988)

    Article  Google Scholar 

  35. R.J. Hill, C.J. Howard, J. Appl. Crystallogr. 20, 467 (1987)

    Article  Google Scholar 

  36. Z. Irshad, S.H. Shah, M.A. Rafiq, M.M. Hasan, J. Alloys Compd. 624, 131 (2015)

    Article  Google Scholar 

  37. R. Köferstein, T. Buttlar, S.G. Ebbinghaus, J. Solid State Chem. 217, 50 (2014)

    Article  ADS  Google Scholar 

  38. S. Mukherjee, P.S. Chakraborty, S. Mukherjee, Int. J. Nano Dimens. 5, 41 (2014)

    Google Scholar 

  39. A.K. Ghosh, H. Kevin, B. Chatterjee, G.D. Dwivedi, A. Barman, H.D. Yang, S. Chatterjee, Solid State Commun. 152, 557 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors FJ is thankful to UGC for providing financial support to carry out the work. We are thankful to Central Instrumental Facility (CIF), Jamia Millia Islamia (JMI), for providing research infrastructure for various characterization facilities. We are also thankful to Azeem Bandey (DU) and Mahboob Ali (DU) for helping out in XRD measurements.

Funding

The authors declare no competing final interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza Shahid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, F., Shahid, R., Khan, M.S. et al. Unraveling optimized parameters for phase pure rhombohedral perovskite bismuth ferrite without leaching. Appl. Phys. A 126, 366 (2020). https://doi.org/10.1007/s00339-020-03556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03556-9

Keywords

Navigation