Skip to main content
Log in

Effect of high-energy ball milling on the magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report an experimental–theoretical analysis of the large magnetocaloric effect observed in the compound La0.7Ca0.2Sr0.1MnO3, synthesized by high-energy ball milling assisted by heat treatment. We demonstrated that this method induces crystal structure distortions and defects, which are responsible for the excellent MC properties. X-ray diffraction and Rietveld refinement allowed quantification of the high levels of microstrain and distortion of the synthesized orthorhombic structure (Pnma). Temperature-dependent magnetization measurements reveal a Curie temperature of approximately 310 K; furthermore, a large value of magnetic entropy change |ΔSM|= 4.11 Jkg−1 K−1 and relative cooling power of 61.12 Jkg−1 were estimated by means of Maxwell's equations under an applied field (H) of 18 kOe, making this manganite a promising material for refrigeration applications. Electron paramagnetic resonance spectra of the doped manganite show the presence of Mn4+ ions, which strengthen the double-exchange interaction (ferromagnetic). It is demonstrated that the high-energy ball milling process assisted by heat treatment is an easy, economic, and fast method for synthesizing doped manganites, showing improved magnetocaloric properties compared to those of the same material synthesized by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno, A. Conde, Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  2. V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  ADS  Google Scholar 

  3. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

    Article  ADS  Google Scholar 

  4. H. Neves Bez, H. Yibole, A. Pathak, Y. Mudryk, V.K. Pecharsky, Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements. J. Magn. Magn. Mat. 458, 301 (2018). https://doi.org/10.1016/j.jmmm.2018.03.020

    Article  ADS  Google Scholar 

  5. V. Chaudhary, X. Chen, R.V. Ramanujan, Iron and manganese based magnetocaloric materials for near room temperature thermal management. Prog. Mater. Sci. 100, 64 (2019). https://doi.org/10.1016/j.pmatsci.2018.09.005

    Article  Google Scholar 

  6. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001). https://doi.org/10.1016/S0370-1573(00)00121-6

    Article  ADS  Google Scholar 

  7. M.H. Phan, S. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  8. S.M. Bukhari, J.B. Giorgi, Tuneability of Sm(1–x)CexFeO3±λ perovskites: Thermal stability and electrical conductivity. Solid State Ion. 180, 198 (2009). https://doi.org/10.1016/j.ssi.2008.12.002

    Article  Google Scholar 

  9. P. Lampen, N.S. Bingham, M.H. Phan, H. Kim, M. Osofsky, A. Pique, T.L. Phan, S.C. Yu, H. Srikanth, Impact of reduced dimensionality on the magnetic and magnetocaloric response of La0.7Ca0.3MnO3. Appl. Phys. Lett. 102, 062414 (2013). https://doi.org/10.1063/1.4792239

    Article  ADS  Google Scholar 

  10. S.J. Hibble, S.P. Cooper, A.C. Hannon, I.D. Fawcett, M. Greenblatt, Local distortions in the colossal magnetoresistive manganates La0.7Ca0.3MnO3, La0.8Ca0.2MnO3 and La0.7Sr0.3MnO3 revealed by total neutron diffraction. J. Phys. Condens. Mater. 11, 9221 (1999). https://doi.org/10.1088/0953-8984/11/47/308

    Article  ADS  Google Scholar 

  11. J. Mira, J. Rivsa, F. Rivadulla, C.V. Vazquez, M.A.L. Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca, Sr)1/3MnO3 perovskites. Phys. Rev. B 60, 2998 (1999). https://doi.org/10.1103/PhysRevB.60.2998

    Article  ADS  Google Scholar 

  12. P. Zhang, P. Lampen, T.L. Phan, S.C. Yu, T.D. Thanh, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1-xCaxMnO3 (0.2%3cx%3c0.4). J. Magn. Magn. Mater. 348, 146 (2013). https://doi.org/10.1016/j.jmmm.2013.08.025

    Article  ADS  Google Scholar 

  13. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. Lopez Quintela, Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1-xSrx)1/3MnO3. J. Appl. Phys. 91, 8903 (2002). https://doi.org/10.1063/1.1451892

    Article  ADS  Google Scholar 

  14. T.A. Ho, S.H. Lim, P.T. Tho, T.L. Phan, S.C. Yu, Magnetic and magnetocaloric properties of La0.7Ca0.3Mn1−xZnxO3. J. Magn. Magn. Mater. 426, 18 (2017). https://doi.org/10.1016/j.jmmm.2016.11.050

    Article  ADS  Google Scholar 

  15. D.C. Linha, N.T. Ha, N.H. Duc, L.H. Giang, L.V. Bau, N.M. An, S.C. Yu, T.D. Thanh, Na-doped La0.7Ca0.3MnO3 compounds exhibiting a large magnetocaloric effect near room temperature. Phys. B 522, 155 (2018). https://doi.org/10.1016/j.physb.2017.04.016

    Article  Google Scholar 

  16. J.A. Silva, M.O.S. Xavier, E.J.R. Plaza, J.C.P. Campoy, A theoretical approach to study the magnetic and magnetocaloric properties in lanthanum manganites. J. Alloys Compd. 766, 248 (2018). https://doi.org/10.1016/j.jallcom.2018.06.198

    Article  Google Scholar 

  17. T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.-T. Le, A.D. Phan, S.C. Yu, First-to-second-order magnetic-phase transformation in La0.7Ca0.3-xBaxMnO3 exhibiting large magnetocaloric effect. J. Alloys Compd. 657, 818 (2016). https://doi.org/10.1016/j.jallcom.2015.10.162

    Article  Google Scholar 

  18. P.J. Lampen, Y.D. Zhang, T.L. Phan, P. Zhang, S.C. Yu, H. Srikanth, M.H. Phan, Magnetic phase transitions and magnetocaloric effect in La0.7Ca0.3Mn1-xFexO3 0.00 ≤ x ≤ 0.07 manganites. J. Appl. Phys. 112, 113901 (2012). https://doi.org/10.1063/1.4768175

    Article  ADS  Google Scholar 

  19. M.-H. Phan, H. Peng, S.-C. Yu, N.H. Hur, Large magnetic entropy change above 300 K in a La0.7Ca0.2Sr0.1MnO3 single crystal. J. Magn. Magn. Mater. 290–291, 665 (2005). https://doi.org/10.1016/j.jmmm.2004.11.330

    Article  ADS  Google Scholar 

  20. T.D. Thanh, T.L. Phan, N.V. Chien, D.H. Manh, S.C. Yu, Second-order phase transition and the magnetocaloric effect in La0.7Ca0.3−xSrxMnO3 nanoparticles. IEEE Trans. Magn. 50, 2501504 (2014). https://doi.org/10.1109/TMAG.2013.2288410

    Article  Google Scholar 

  21. M.H. Phan, S.C. Yu, N.H. Hur, Excellent magnetocaloric properties of La0.7Ca0.3−xSrxMnO3 (0.05≤x≤0.25) single crystals. Appl. Phys. Lett. 86, 072504 (2005). https://doi.org/10.1063/1.1867564

    Article  ADS  Google Scholar 

  22. M. Jeddi, H.G. Gharsallah, M. Bejar, M. Bekri, E. Dhahri, E.K. Hlil, Magnetocaloric study, critical behavior and spontaneous magnetization estimation in La0.6Ca0.3Sr0.1MnO3 perovskite. RSC Adv. 8, 9430 (2018). https://doi.org/10.1039/C8RA00001H

    Article  Google Scholar 

  23. C.A. Taboada-Moreno, F. Sánchez-De Jesús, F. Pedro-García, C.A. Cortés-Escobedo, J.A. Betancourt-Cantera, M. Ramírez-Cardona, A.M. Bolarín-Miró, Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 496, 165887 (2020). https://doi.org/10.1016/j.jmmm.2019.165887

    Article  Google Scholar 

  24. A. Ezaami, N. Ouled nasser, W. Cheikhrouhou-Koubaa, Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol-gel and solid-state process. J Mater Sci: Mater. Electron 29, 3648 (2017). https://doi.org/10.1007/s10854-016-5969-0

    Article  Google Scholar 

  25. A. Ezaami, I. Chaaba, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhancement of magnetocaloric properties around room temperature in (1–x)La0.7Ca0.25Sr0.05MnO3 / xLa0.7Ca0.2Sr0.1MnO3 system (0≤x≤1). J. Alloy. Compd. 735, 2331 (2018). https://doi.org/10.1016/j.jallcom.2017.11.353

    Article  Google Scholar 

  26. A.M. Bolarín-Miró, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, R. Valenzuela, S. Ammar, Structure and magnetic properties of GdxY1-xFeO3 obtained by mechanosynthesis. J. Alloys Compd. 586, 90 (2014). https://doi.org/10.1016/j.jallcom.2013.04.029

    Article  Google Scholar 

  27. A.M. Bolarín-Miró, P. Vera-Serna, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, A. Martínez-Luévanos, Mechanosynthesis and magnetic characterization of nanocrystalline manganese ferrites. J. Mat. Sci.: Mater. Electron. 22, 1046 (2011). https://doi.org/10.1007/s10854-010-0257

    Article  Google Scholar 

  28. F.N. Tenorio González, A.M. Bolarín Miró, F. Sánchez De Jesús, P. Vera-Serna, N. Menéndez-González, J. Sánchez-Marcos, Crystal structure and magnetic properties of high Mn-doped strontium hexaferrite. J. Alloy. Compd. 695, 2083 (2017). https://doi.org/10.1016/j.jallcom.2016.11.047

    Article  Google Scholar 

  29. L. Lutterotti, S. Matthies, H.R. Wenk, MAUD: A friendly java program for material analysis using diffraction. IUCr: Newsl. CPD 21, 14 (1999)

    Google Scholar 

  30. H.N. Bez, H. Yibole, A. Pathak, Y. Mudryk, V.K. Pecharsky, Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements. J. Magn. Magn. Mater. 458, 301 (2018). https://doi.org/10.1016/j.jmmm.2018.03.020

    Article  ADS  Google Scholar 

  31. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  32. M. O´Keeffe, Some Structures Topologically Related to Cubic Perovskite (E21), ReO3 (D09) and Cu3Au (L12). Acta Crystallogr. 33, 3802 (1977). https://doi.org/10.1107/S0567740877012114

    Article  Google Scholar 

  33. J.B. Goodenough, Electronic structure of CMR manganites. J. Appl. Phys. 81, 5330 (1997). https://doi.org/10.1063/1.364536

    Article  ADS  Google Scholar 

  34. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. López Quintela, M.A. Rodríguez, C.A. Ramos, Strong reduction of lattice effects in mixed-valence manganites related to crystal symmetry. Phys. Rev. B 65, 024418 (2002). https://doi.org/10.1103/PhysRevB.65.024418

    Article  ADS  Google Scholar 

  35. B.H. Toby, R factors in Rietveld analysis: How good is good enough? Powder Diffr. 21–1, 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  ADS  Google Scholar 

  36. T.A. Ho, N.T. Dang, T.L. Phan, D.S. Yang, B.W. Lee, S.C. Yu, Magnetic and magnetocaloric properties in La0.7Ca0.3-xNaxMnO3 exhibiting first order and second-order magnetic phase transitions. J. Alloys Compd. 676, 305 (2016). https://doi.org/10.1016/j.jallcom.2016.03.156

    Article  Google Scholar 

  37. S. Bouzidi, M.A. Gdaiem, S. Rebaoui, J. Dhahri, E.K. Hlil, Large magnetocaloric effect in La0.75Ca0.25–xNaxMnO3 (0 ≤ x ≤ 0.10) manganites. Appl. Phys. A 126, 60 (2020). https://doi.org/10.1007/s00339-019-3219-z

    Article  ADS  Google Scholar 

  38. H. Gharsallah, M. Bejar, Prediction of magnetocaloric effect in La0.6Ca0.4-xSrxMnO3 compounds for x=0, 0.05 and 0.1 with phenomenological model. Ceramic. Int. 42(1A), 697 (2016). https://doi.org/10.1016/j.ceramint.2015.08.167

    Article  Google Scholar 

  39. T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112, 093906 (2012). https://doi.org/10.1063/1.4764097

    Article  ADS  Google Scholar 

  40. W.A. Sun, J.Q. Li, W.Q. Ao, J.N. Tang, X.Z. Gong, Hydrothermal synthesis and magnetocaloric effect of La0.7Ca0.2Sr0.1MnO3. Powder Technol 166, 77 (2006). https://doi.org/10.1016/j.powtec.2006.05.015

    Article  Google Scholar 

  41. J.C. Debnath, R. Zeng, J.H. Kim, S.X. Dou, Improvement of refrigerant capacity of La0.7Ca0.3MnO3 material with a few percent Co doping. J. Magn. Magn. Mater. 323, 139 (2011). https://doi.org/10.1016/j.jmmm.2010.08.049

    Article  ADS  Google Scholar 

  42. B.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  43. V.S. Alarcos, J.L. García, I. Unzueta, J.I. Pérez, V. Recarte, Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy. J. Alloys Compd. 774, 586 (2019). https://doi.org/10.1016/j.jallcom.2018.10.016

    Article  Google Scholar 

  44. C.M. Bonilla, J.H. Albillos, F. Bartolomé, L.M. García, M.P. Borderías, V. Franco, Universal behavior for magnetic entropy change in magnetocaloric materials: An analysis on the nature of phase transitions Phys. Rev. B: Condens. Matter Mater. Phys. 81, 224424 (2010). https://doi.org/10.1103/PhysRevB.81.224424

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sánchez-De Jesús.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolarín-Miró, A.M., Taboada-Moreno, C.A., Cortés-Escobedo, C.A. et al. Effect of high-energy ball milling on the magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3. Appl. Phys. A 126, 369 (2020). https://doi.org/10.1007/s00339-020-03555-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03555-w

Keywords

Navigation