Skip to main content

Correlation between laser spectroscopic studies and mechanical characterization of zirconia-based multiwall carbon nanotube ceramic composites

Abstract

The hardness of zirconium oxide-based ceramic nanocomposites was correlated with the laser spectroscopic studies by analyzing the samples through nanosecond and femtosecond laser to see the viability of this technique as a fast and in situ for assessment of mechanical properties in nuclear industry. Zirconia incorporated with different vol% of multiwall carbon nanotubes were processed by the high frequency induction heated sintering. The composites were characterized by the nanosecond laser-induced breakdown spectroscopy (LIBS) with optimized delay time of 1, 2, and 3 µs and 200 and 300 mJ energies generated by laser Nd:YAG (λ = 1064 nm). The plasma temperature resulted by the ablation of different samples was estimated through intensity of selected zirconium lines using the Boltzmann plot method. The samples were mechanically characterized by the Vickers hardness test. The estimated plasma temperature and the ratio of Zr(II) with different intensities of Zr(I) emission lines show rather weak dependency and increase with surface hardness. The samples were scrutinized by the femtosecond laser micromachining through variation in depth and surface morphology of machined areas. It is found that deeper circular groove and enhanced erosion of disk shape by femtosecond laser machining are achieved for less hard materials and are in agreement with the LIBS analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M. John, IOP Conf. Ser. Mater. Sci. Eng. 18, 162001 (2011)

    Article  Google Scholar 

  2. Y. Katoh, Advances in Ceramic Matrix Composites, 2nd edn. (Woodhead Publishing, Cambridge, 2018), p. 595

    Book  Google Scholar 

  3. L.W. Edward, G. Matthew, M.S. Thomas, G.R. William, J. Am. Ceram. Soc. 96, 2005 (2013)

    Article  Google Scholar 

  4. H. Guo, T.J.M. Bayer, J. Guo, A. Baker, C.A. Randall, Scr. Mater. 136, 141 (2017)

    Article  Google Scholar 

  5. S.-Q. Guo, J. Eur. Ceram. Soc. 29, 995 (2009)

    Article  Google Scholar 

  6. A. Botto, B. Campanella, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, F. Poggialini, V. Palleschi, J. Anal. At. Spectrom. 34, 81 (2019)

    Article  Google Scholar 

  7. B. Zhang, X.F. Liu, J.R. Qiu, J. Materiomics 5, 1 (2019)

    ADS  Article  Google Scholar 

  8. J. Ha et al., Nanoscale 9, 16627 (2017)

    Article  Google Scholar 

  9. K. Rahim, A. Mian, J. Electron. Packag. 139, 030801 (2017)

    Article  Google Scholar 

  10. L. Jiang, A.-D. Wang, B. Li, T.-H. Cui, Y.-F. Lu, Light Sci. Appl. 7, 17134 (2018)

    Article  Google Scholar 

  11. K. Ahmad, M.A. Al-Eshaikh, A.N. Kadachi, Appl. Phys. A 119, 1223 (2015)

    ADS  Article  Google Scholar 

  12. X. Wang, X. Hong, P. Chen, C. Zhao, Z. Jia, L. Wang, L. Zou, IEEE Trans. Plasma Sci. PP, 1 (2018)

    Google Scholar 

  13. A.H. Galmed, C. Steenkamp, I. Ahmed, A. du Plussis, H. von Bergmann, M.A. Harith, M. Maaza, Appl. Phys. B Lasers Opt. 124, 225 (2018)

    ADS  Article  Google Scholar 

  14. M. Momcilovic, S. Zivkovic, J. Petrovic, I. Cvijovic-Alagic, J. Ciganovic, Appl. Phys. B Lasers Opt. 125, 222 (2019)

    ADS  Article  Google Scholar 

  15. A.H. Galmed, C.M. Steenkamp, I. Ahmed, H.V. Bergmann, M.A. Harith, M. Maaza, J. Laser Appl. 32, 012012 (2020)

    ADS  Article  Google Scholar 

  16. K. Ahmad, W. Pan, J. Eur. Ceram. Soc. 35, 663 (2015)

    Article  Google Scholar 

  17. K. Ahmad, W. Pan, H. Wu, RSC Adv. 5, 33607 (2015)

    Article  Google Scholar 

  18. K. Ahmad, W. Tawfik, W.A. Farooq, J.P. Singh, Appl. Phys. A 117, 1315 (2014)

    Article  Google Scholar 

  19. Z. Almutairi, K. Ahmad, M. Alanazi, A. Alhazaa, Appl. Sci. 9, 4022 (2019)

    Article  Google Scholar 

  20. A.P. Thorne, Spectrophysics (Chapman and Hall, London, 1974), pp. 354–357

    Google Scholar 

  21. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  22. T. Fujimoto, Plasma Spectroscopy (Clarendon Press, Oxford, 2004)

    Book  Google Scholar 

  23. K. Ahmad, W. Tawfik, W. A. Farooq, and J. P. Singh, Appl. Phys. A 117, 1315 (2014)

    Article  Google Scholar 

  24. J.J. Gilman, Chemistry and Physics of Mechanical Hardness (Wiley, Hoboken, 2009), p. 1

    Book  Google Scholar 

  25. T.A. Labutin, A.M. Popov, V.N. Lednev, N.B. Zorov, Spectrochim. Acta Part B 64, 938 (2009)

    ADS  Article  Google Scholar 

  26. S.N. Abdulmadjid et al., J. Appl. Phys. 119, 163304 (2016)

    ADS  Article  Google Scholar 

  27. K. Tsuyuki, S. Miura, N. Idris, K.H. Kurniawan, T.J. Lie, K. Kagawa, Appl. Spectrosc. 60, 61 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the King Saud University Deanship of Research under program (RG-1439-55). We appreciate help of Ahmed N. Kadachi in LIBS analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeyad Almutairi or Kaleem Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almutairi, Z., Ahmad, K., Al-Gawati, M.A. et al. Correlation between laser spectroscopic studies and mechanical characterization of zirconia-based multiwall carbon nanotube ceramic composites. Appl. Phys. A 126, 401 (2020). https://doi.org/10.1007/s00339-020-03553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03553-y

Keywords

  • LIBS
  • Femtosecond
  • Nanocomposites
  • Ceramics
  • Machining