Skip to main content
Log in

Models of displacement and blocking force of ionic-polymer metal composites based on actuation mechanism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, starting from the mechanism of ionic-polymer metal composites (IPMC) blocking force and displacement, the steady state of IPMC with maximum driving force is analyzed, and the mathematical model of displacement and blocking force of IPMC is established. The displacement and blocking force of Pt-IPMC are measured, and the proposed mathematical model is verified. The results show that with the increase in voltage, IPMC shows the tendency of increasing first and then decreasing. It is concluded that there is a nonlinear quartic polynomial relationship from microforce analysis between voltage and displacement, voltage and force, and the relative error verified by experiments is less than 10%. The theoretical model proposed in the paper can well reflect the relationship between voltage and displacement, and force, which provides a basis for the further application and theoretical basic modeling of IPMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Wang, X. Yang, Y. Chen, D.K. Wainwright, C.P. Kenaley, Z. Gong, Z. Liu, H. Liu, J. Guan, T. Wang, J.C. Weaver, R.J. Wood, L. Wen, A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2, eaan8072 (2017)

    Article  Google Scholar 

  2. Z. Ren, X. Yang, T. Wang, L. Wen, Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed. Bioinspir. Biomim. 11, 16008 (2016)

    Article  ADS  Google Scholar 

  3. D. Pugal, K. Jung, A. Aabloo, K.J. Kim, Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives. Polym. Int. 59, 279–289 (2010)

    Article  Google Scholar 

  4. L. Yang, D.S. Zhang, X.N. Zhang, A.F. Tian, Fabrication and actuation of Cu-ionic polymer metal composite. Polymers 12, 460 (2020)

    Article  Google Scholar 

  5. K.J. Kim, V. Palmre, T. Stalbaum, T. Hwang, Q. Shen, S. Trabia, Promising developments in marine applications with artificial muscles: electrodeless artificial cilia microfibers. Mar. Technol. Soc. J. 50, 24–34 (2016)

    Article  Google Scholar 

  6. L. Yang, D. Zhang, X. Zhang, A. Tian, Prediction of the actuation property of Cu ionic polymer–metal composites based on backpropagation neural networks. ACS Omega 5, 4067–4074 (2020)

    Article  Google Scholar 

  7. S. Guo, L. Shi, X.A. Ye, L. Li, A new jellyfish type of underwater microrobot, in 2007 International Conference on Mechatronics and Automation, Harbin, pp. 509–514 (2007)

  8. V. Palmre, J.J. Hubbard, M. Fleming, D. Pugal, S. Kim, K.J. Kim, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater. Struct. 22, 014003 (2012)

    Article  ADS  Google Scholar 

  9. A. Tripathi, B. Chattopadhyay, S. Das, Cost-effective fabrication of ionic polymer based artificial muscles for catheter-guidewire maneuvering application. Microsyst. Technol. 25, 1129–1136 (2019)

    Article  Google Scholar 

  10. G.H. Feng, S.Y. Hou, Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application. Sens. Actut. A Phys. 275, 137–147 (2018)

    Article  Google Scholar 

  11. X.L. Chang, P.S. Chee, E.H. Lim, W.C. Chong, Radiofrequency enabled ionic polymer metal composite (IPMC) actuator for drug release application. Smart Mater. Struct. 28, 015024 (2018)

    Article  ADS  Google Scholar 

  12. M. Porfiri, An electromechanical model for sensing and actuation of ionic polymer metal composites. Smart Mater. Struct. 18, 015016 (2009)

    Article  Google Scholar 

  13. H. Lei, X. Tan, Modeling of environment-dependent ionic polymer metal composite actuation and sensing dynamics. Ionic polymer metal composites (IPMCs): smart multi-functional materials and artificial muscles, 1, Chapter 10, pp. 334–352

  14. D. Vokoun, Q. He, L. Heller, M. Yu, Z. Dai, Modeling of IPMC cantilever’s displacements and blocking forces. J. Bionic Eng. 12, 142–151 (2015)

    Article  Google Scholar 

  15. M. Patel, S. Mukherjee, Modelling and analysis of ionic polymer metal composite based energy harvester. Mater. Today: Proc. 5, 19815–19827 (2018)

    Google Scholar 

  16. A. Leronni, L. Bardella, Influence of shear on sensing of ionic polymer metal composites. Eur. J. Mech. A/Solids 77, 103750 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. H. Liu, K. Xiong, K. Bian, K. Zhu, Experimental study and electromechanical model analysis of the nonlinear deformation behavior of IPMC actuators. Acta. Mech. Sin. 33, 382–393 (2017)

    Article  ADS  Google Scholar 

  18. H. Zamyad, N. Naghavi, Behavior identification of IPMC actuators using Laguerre-MLP network with consideration of ambient temperature and humidity effects on their performance. IEEE Trans. Instrum. Meas. 67, 2723–2732 (2018)

    Article  Google Scholar 

  19. J. Khawwaf, J. Zheng, A. Al-Ghanimi, Z. Man, R. Nagarajah. Modeling and tracking control of an IPMC actuator for underwater applications, in Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Australia, pp. 550–554 (2016)

  20. L. Yang, D. Zhang, X. Zhang, A. Tian, X. Hui, J. Yang, Fabrication of Cu/Nafion-based ionic polymer metal composites by electroless plating method. Integr. Ferroelectr. (2020). https://doi.org/10.1080/10584587.2020.1728809

    Article  Google Scholar 

  21. Q. He, Z. Liu, G. Yin, Y. Yue, M. Yu, H. Li, K. Ji, X. Xu, Z. Dai, M. Chen, The highly stable air-operating ionic polymer metal composite actuator with consecutive channels and its potential application in soft gripper. Smart Mater. Struct. 29, 045013 (2020)

    Article  ADS  Google Scholar 

  22. M.C. Saccardo, A.G. Zuquello, K.A. Tozzi, R. Gonçalves, L.A. Hirano, C.H. Scuracchio, Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites. Mater. Chem. Phys. 244, 122674 (2020)

    Article  Google Scholar 

  23. S.F. Li, J. Yip, Characterization and actuation of ionic polymer metal composites with various thicknesses and lengths. Polymer 11, 91 (2019)

    Article  Google Scholar 

  24. E. Shoji, D. Hirayama, Effects of humidity on the performance of ionic polymer-metal composite actuators: experimental study of the back-relaxation of actuators. J. Phys. Chem. B 111, 11915–11920 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance from the Key Science and Technology Program of Shaanxi Province, China, 2016KTZDGY-02-03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Yang or Dongsheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, D., Zhang, X. et al. Models of displacement and blocking force of ionic-polymer metal composites based on actuation mechanism. Appl. Phys. A 126, 365 (2020). https://doi.org/10.1007/s00339-020-03546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03546-x

Keywords

Navigation