Skip to main content
Log in

Room temperature magnetic biasing in Bi0.85La0.15FeO3 and BaTiO3 composite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the crystal structure and magnetic properties of two sets of multiferroic nanocomposites of Bi0.85La0.15FeO3 (BLFO) and BaTiO3 (BTO) were reported. The samples were prepared by adopting the conventional solid-state reaction and ball mill technique. The X-ray diffraction pattern and Raman spectra analysis reveal the impurity-free crystal structure, and both the phases (i.e., BLFO and BTO) are present in parallel in the nanocomposites. Scanning electron microscopy was used to study the surface morphology. The saturation magnetizations of the ball-milled nanocomposite are found to be significantly higher compared to that of the solid-state composites. The Vegard law was used to compare the observed saturation magnetization with the oretical values. The pinched hysteresis loop was observed in both sets of composites, which was explained by exchange type magnetic interaction between BLFO and BTO. The squareness ratio (R) tells the presence of intergrain magnetostatic interaction in the composites. The hysteresis loop width (ΔH) versus magnetization (M) plots for all the composites reveals the hysteresis loop anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Google Scholar 

  2. W. Eerenstein, M.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature (London) 442, 759 (2006)

    ADS  Google Scholar 

  3. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B. 71(1), 014113 (2005)

    ADS  Google Scholar 

  4. R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s "lone pairs" in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892–2899 (2001)

    Google Scholar 

  5. R.V. Shpanchenko, V.V. Chernaya, A.A. Tsirlin, P.S. Chizhov, D.E. Sklovsky, E.V. Antipov, E.P. Khlybov, V. Pomjakushin, A.M. Balagurov, Synthesis, structure, and properties of new perovskite PbVO3. Chem. Mater. 16, 3267–3273 (2004)

    Google Scholar 

  6. J.F. Scott, Phase transitions in BaMnF4. Rep. Prog. Phys. 42(6), 1055–1084 (1979)

    ADS  Google Scholar 

  7. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kitô, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005)

    ADS  Google Scholar 

  8. V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, Z. Xia, Synthesis and spectroscopic properties of multiferroic β′-Tb2(MoO4)3. Opt. Mater. 36, 1631–1635 (2014)

    ADS  Google Scholar 

  9. V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Electronic structure of layered titanate Nd2Ti2O7. Surf. Sci. 602, 3095–3099 (2008)

    ADS  Google Scholar 

  10. M.G. Vishwajit, A.A. Smita, Perovskite-spinel composite approach to modify room temperature structural, magnetic and dielectric behavior of BiFeO3. J. Alloys Compd. 695, 3689–3703 (2017)

    Google Scholar 

  11. R. Pandey, L.K. Pradhan, M. Kar, Structural, magnetic, and electrical properties of (1–x)Bi0.85La0.15FeO3-(x) CoFe2O4 multiferroic composites. J. Phys. Chem. Solids 115, 42–48 (2018)

    ADS  Google Scholar 

  12. V. Gorige, R. Kati, D.H. Yoon, P.S. Anil Kumar, Strain mediated magnetoelectric couplingin a NiFe2O4–BaTiO3 multiferroic composite. J. Phys. D Appl. Phys. 49, 405001 (2016)

    Google Scholar 

  13. B. Sarkar, B. Dalal, V.D. Ashok, K. Chakrabarti, A. Mitra, S.K. De, Magnetic properties of mixed spinel BaTiO3–NiFe2O4 composites. J. Appl. Phys. 115, 123908 (2014)

    ADS  Google Scholar 

  14. S.N. Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, Dielectric, magnetic and magnetoelectric properties of multiferroic BiFe0.5Cr0.5O3–NiFeO3 composites. J. Appl. Phys. 107, 09D919 (2010)

    Google Scholar 

  15. M. Rawat, K.L. Yadav, Electrical, magnetic and magnetodielectric properties in ferrite-ferroelectric particulate composites. Smart Mater. Struct. 24, 045041 (2015)

    ADS  Google Scholar 

  16. N. Adhlakha, K.L. Yadav, R. Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4−0.7BiFeO3 ceramics. Smart Mater. Struct. 23, 105024 (2014)

    ADS  Google Scholar 

  17. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, Lattice strain induced multiferroicity in PZT–CFO particulate composite. J. Appl. Phys. 123, 074101 (2018)

    ADS  Google Scholar 

  18. L. Yan, Z. Wang, Z. Xing, J. Li, D. Viehland, Magnetoelectric and multiferroic properties of variously oriented epitaxial BiFeO3–CoFe2O4 nanostructured thin films. J. Appl. Phys. 107, 064106 (2010)

    ADS  Google Scholar 

  19. M. Rafique, A. Herklotz, K. Dorr, S. Manzoor, Giant room temperature magnetoelectric response in strain controlled nanocomposites. Appl. Phys. Lett. 110, 202902 (2017)

    ADS  Google Scholar 

  20. R. Han, L. Qi, X. Hou, L. Liu, H. Liu, X.-N. Xian, G.-X. Guo, H.-Y. Sun, Magnetic contribution of Bi0.85La0.15FeO3 in (1−x)Bi0.85La0.15FeO3–(x)CoFe2O4 nanocomposite powders. J. Magn. Magn. Mater. 420, 117–121 (2016)

    ADS  Google Scholar 

  21. S.P. Crane, C. Bihler, M.S. Brandt, S.T.B. Goennenwein, M. Gajek, R. Ramesh, Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5–L9 (2009)

    ADS  Google Scholar 

  22. H. Singh, K.L. Yadav, Synthesis and study of structural, dielectric, magnetic and magnetoelectric characterization of BiFeO3–NiFe2O4 nanocomposites prepared by chemical solution method. J. Alloys Compd. 585, 805–810 (2014)

    Google Scholar 

  23. S. Hohenberger, V. Lazenka, K. Temst, S. Selle, C. Patzig, T. Höche, M. Grundmann, M. Lorenz, Effect of double layer thickness onmagnetoelectric coupling in multiferroic BaTiO3–Bi0.95Gd0.05FeO3 multilayers. J. Phys. D Appl. Phys. 51, 184002 (2018)

    ADS  Google Scholar 

  24. J.K. Jochum, M. Lorenz, H.P. Gunnlaugsson, C. Patzig, T. Höche, M. Grundmann, A. Vantomme, K. Temst, M.J. Van Bael, V. Lazenka, Impact of magnetization and hyperfine field distribution on high magnetoelectric coupling strength in BaTiO3–BiFeO3 multilayers. Nanoscale 10, 5574 (2018)

    Google Scholar 

  25. M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, A. Volodin, M.J. Van Bael, K. Temst, A. Vantomme, M. Grundmann, Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling. J. Phys. D Appl. Phys. 47, 135303 (2014)

    ADS  Google Scholar 

  26. M. Lorenz, G. Wagner, V. Lazenka, P. Schwinkendorf, H. Modarresi, M.J. Van Bael, A. Vantomme, K. Temst, O. Oeckler, M. Grundmann, Correlation of magnetoelectric coupling in multiferroic BaTiO3–BiFeO3 superlattices with oxygen vacancies and antiphase octahedral rotations. Appl. Phys. Lett. 106, 012905 (2015)

    ADS  Google Scholar 

  27. S. Yang, A. Kumar, V. Petkov, S. Priya, Room-temperature magnetoelectric coupling in single-phase BaTiO3–BiFeO3 system. J. Appl. Phys. 113, 144101 (2013)

    ADS  Google Scholar 

  28. V. Lazenka, J.K. Jochum, M. Lorenz, H. Modarresi, H.P. Gunnlaugsson, M. Grundmann, M.J. Van Bael, K. Temst, A. Vantomme, Interface induced out-of-plane magnetic anisotropy in magnetoelectric BiFeO3–BaTiO3 Superlattices. Appl. Phys. Lett. 110, 092902 (2017)

    ADS  Google Scholar 

  29. M.M. Vijatović, J.D. Bobić, B.D. Stojanović, History and challenges of barium titanate: part I. Sci. Sinter. 40, 155–165 (2008)

    Google Scholar 

  30. A. Sathiya Priya, I.B. Shameem Banu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Mater. Lett. 142, 42–44 (2015)

    Google Scholar 

  31. R. Gupta, J. Shah, S. Chaudhary, S. Singh, R.K. Kotnala, Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1–x)BiFeO3–xBaTiO3. J. Nanopart. Res. 15, 2004 (2013)

    ADS  Google Scholar 

  32. C. Shi, X. Liu, Y. Hao, Z. Hu, Structural, magnetic and dielectric properties of Sc modified (1 − y) BiFeO3–BaTiO3 ceramics. Solid State Sci. 13, 1885–1888 (2011)

    ADS  Google Scholar 

  33. J. Wang, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3–BaTiO3 ceramics. J. Alloys Compd. 748, 758–765 (2018)

    Google Scholar 

  34. T. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H. Zhou, S.S. Wong, Composition-dependent magnetic properties of BiFeO3–BaTiO3 solid solution nanostructures. Phys. Rev. B 82, 024431 (2010)

    ADS  Google Scholar 

  35. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306 (2006)

    ADS  Google Scholar 

  36. R.V.K. Mangalam, N. Ray, U.V. Waghmare, A. Sundaresan, C.N.R. Rao, Multiferroic properties of nanocrystalline BaTiO3. Solid State Commun. 149, 1–5 (2009)

    ADS  Google Scholar 

  37. N. Nuraje, K. Su, A. Haboosheh, J. Samson, E.P. Manning, N.L. Yang, H. Matsui, Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv. Mater. 18, 807 (2006)

    Google Scholar 

  38. C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488 (2004)

    ADS  Google Scholar 

  39. J. Junquera, P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003)

    ADS  Google Scholar 

  40. R. Böttcher, C. Klimm, D. Michel, H.C. Semmelhack, G. Völkel, H.J. Gläsel, E. Hartmann, Size effect in Mn2+-doped BaTiO3 nanopowders observed by electron paramagnetic resonance. Phys. Rev. B 62, 2085 (2000)

    ADS  Google Scholar 

  41. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698 (1994)

    ADS  Google Scholar 

  42. M. Połomska, B. Hilczer, I. Szafraniak-Wiza, A. Pietraszko, B. Andrzejewski, XRD, Raman and magnetic studies of Bi1−xLaxFeO3 solid solution obtained by mechanochemical synthesis. Phase Transit. 90, 24–33 (2017)

    Google Scholar 

  43. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. 101, 034104 (2007)

    ADS  Google Scholar 

  44. R. Kumar, S. Guha, R.K. Singh, M. Kar, Surface anisotropy induced magnetism in BaTiO3–CoFe2O4 (BTO–CFO) nanocomposite. J. Magn. Magn. Mater. 465, 93–99 (2018)

    ADS  Google Scholar 

  45. R. Kumar, R.K. Singh, M. Kar, Magnetic interaction between ferrimagnetic CoFe2O4 and antiferromagnetic NiO in nanocomposite. Phys. B Phys. Condens. Matter 530, 114–120 (2018)

    ADS  Google Scholar 

  46. R. Pandey, L.K. Pradhan, P. Kumar, M. Kar, Effect of Ti substitution in place of Fe on crystal symmetries and magnetic properties of Bi0.850La0.150FeO3. J. Phys. Chem. Solids 119, 107–113 (2018)

    ADS  Google Scholar 

  47. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley Series, Boston, 1987)

    Google Scholar 

  48. D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, Raman scattering study of polycrystalline magneto-electric BiFeO3. J. Magn. Magn. Mater. 320, 548–552 (2008)

    ADS  Google Scholar 

  49. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−xCaxFe1−xMnxO3 ceramics. J. Appl. Phys. 117, 194103 (2015)

    ADS  Google Scholar 

  50. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3: part I—isolated particles and aggregates. J. Raman Spectrosc. 38, 1288 (2007)

    ADS  Google Scholar 

  51. C.H. Perry, D.B. Hall, Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15, 700 (1965)

    ADS  Google Scholar 

  52. U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J. Phys. Chem. B 110, 12249 (2006)

    Google Scholar 

  53. U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 14256 (1998)

    ADS  Google Scholar 

  54. C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)

    ADS  Google Scholar 

  55. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  56. E.F. Kneller, R. Hawig, The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588 (1991)

    ADS  Google Scholar 

  57. P.T. Tho, D.H. Kim, T.L. Phan, N.V. Dang, B.W. Lee, Intrinsic exchange bias and vertical hysteresis shift in Bi0.84La0.16Fe0.96Ti0.04O3. J. Magn. Magn. Mater. 462, 172–177 (2018)

    ADS  Google Scholar 

  58. T. Phan, P. Zhang, D.S. Yang, T.D. Thanh, D.A. Tuan, S.C. Yu, Origin of ferromagnetism in BaTiO3 nanoparticles prepared by mechanical milling. J. Appl. Phys. 113, 17E305-1-3 (2013)

    Google Scholar 

  59. S.G. Bahoosh, S. Trimper, J.M. Wesselinowa, Origin of ferromagnetism in BaTiO3 nanoparticles. Phys. Status Solidi RRL 5, 382–384 (2011)

    Google Scholar 

  60. G. Alvarez, A. Conde-Gallardo, H. Montiel, R. Zamorano, About room temperature ferromagnetic behavior in BaTiO3 perovskite. J. Magn. Magn. Mater. 401, 196–199 (2016)

    ADS  Google Scholar 

  61. L.Z. Vegard, The constitution of mixed crystals and the space occupied by atoms. Z. Phys. 5, 17–26 (1921)

    ADS  Google Scholar 

  62. Z.L. Wang, Y. Liu, Z. Zhang, Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications I, vol. 3 (Kluwer press, Hingham, 2016), p. 252

    Google Scholar 

  63. E.C. Stoner, E.P. Wolfarth, Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 340, 599 (1948)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Pradhan, L.K. & Kar, M. Room temperature magnetic biasing in Bi0.85La0.15FeO3 and BaTiO3 composite. Appl. Phys. A 126, 361 (2020). https://doi.org/10.1007/s00339-020-03541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03541-2

Keywords

Navigation