Skip to main content
Log in

Enhanced thermopower in (013)-oriented silver selenide films produced by thermal annealing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline thin films of thermoelectric compound Ag2Se (AS) were deposited on the glass substrate kept at room temperature by thermal evaporation technique. Deposited films were annealed in vacuum of 2 × 10–5 mbar at 90 °C, 120 °C, 150 °C, 180 °C and 210 °C for 1 h. A sudden change in crystal orientation from (121) to (013) was observed as annealing temperature was increased to 210 °C. Seebeck coefficient for (013) oriented film was also found to be − 114.6 μV/K at room temperature compared to − 62.3 μV/K for as-deposited film. Formation of silver segregates in the film was observed where variation of size of silver grains on annealing played a crucial role in optimising Seebeck coefficient. Energy filtering effect by silver grains in combination to (013) orientation of silver selenide crystals was inferred as a reason for enhancement of Seebeck coefficient. Room temperature value of power factor was optimised at annealing temperature of 120 °C (AS-120) which was calculated to be 755.0 μW/mK2 and was also found to be comparable to that of film annealed at 210 °C (AS-210) i.e., 705.6 μW/mK2. Unlike AS-120, power factor value of AS-210 was due to considerable value Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.W. Day, K.A. Borup, T. Zhang, F. Drymiotis, D.R. Brown, X. Shi, L. Chen, B.B. Iversen, G.J. Snyder, Mater. Renew. Sustain. Energy 3, 26 (2014)

    Google Scholar 

  2. C. Gayner, K.K. Kar, Prog. Mater. Sci. 83, 330 (2016)

    Google Scholar 

  3. W. Liu, X. Yan, G. Chen, Z. Ren, Nano Energy 1, 42 (2012)

    Google Scholar 

  4. C. Xiao, X. Qin, J. Zhang, R. An, J. Xu, K. Li, B. Cao, J. Yang, B. Ye, Y. Xie, J. Am. Chem. Soc. 134, 18460 (2012)

    Google Scholar 

  5. C. Ma, H. Liu, R. Chen, Q. Su, H. Cui, Y. Gu, J. Mater. Sci. Mater. Electron. 30, 6403 (2019)

    Google Scholar 

  6. K.H. Lee, P. Dharmaiah, S.J. Hong, Scr. Mater. 162, 437 (2019)

    Google Scholar 

  7. A.M. Adam, A. El-Khouly, E. Lilov, S. Ebrahim, Y. Keshkh, M. Soliman, E.M. El Maghraby, V. Kovalyo, P. Petkov, Mater. Chem. Phys. 224, 264 (2019)

    Google Scholar 

  8. Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, Prog. Mater. Sci. 97, 283 (2018)

    Google Scholar 

  9. C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, Y. Xie, J. Am. Chem. Soc. 134, 4287 (2012)

    Google Scholar 

  10. J.A. Perez-Taborda, O. Caballero-Calero, L. Vera-Londono, F. Briones, M. Martin-Gonzalez, Adv. Energy Mater. 8, 1702024 (2018)

    Google Scholar 

  11. J.B. Conn, R.C. Taylor, J. Electrochem. Soc. 107, 977 (2007)

    Google Scholar 

  12. T. Day, F. Drymiotis, T. Zhang, D. Rhodes, X. Shi, L. Chen, J. Mater. Chem. C 1, 7568 (2013)

    Google Scholar 

  13. C. Lee, Y.H. Park, H. Hashimoto, J. Appl. Phys. 101, 024920 (2007)

    ADS  Google Scholar 

  14. W. Mi, P. Qiu, T. Zhang, Y. Lv, X. Shi, L. Chen, Appl. Phys. Lett. 104, 133903 (2014)

    ADS  Google Scholar 

  15. M. Ferhat, J. Nagao, J. Appl. Phys. 88, 813 (2000)

    ADS  Google Scholar 

  16. K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid, A. Cabot, K.M. Ng, J. Mater. Chem. C 7, 2646 (2019)

    Google Scholar 

  17. M.K. Han, Y. Jin, D.H. Lee, S.J. Kim, Materials 10, 1235 (2017)

    ADS  Google Scholar 

  18. K. Zhou, J. Chen, R. Zheng, X. Ke, T. Zhang, X. Shi, L. Chen, Ceram. Int. 42, 12490 (2016)

    Google Scholar 

  19. Y.S. Tveryanovich, A.A. Razumtcev, T.R. Fazletdinov, A.S. Tverjanovich, E.N. Borisov, Thin Solid Films 666, 172 (2018)

    ADS  Google Scholar 

  20. Y. Ding, Y. Qiu, K. Cai, Q. Yao, S. Chen, L. Chen, J. He, Nat. Commun. 10, 841 (2019)

    Google Scholar 

  21. M. Pandiaraman, N. Soundararajan, J. Theor. Appl. Phys. 6, 7 (2012)

    ADS  Google Scholar 

  22. S. Singh, J. Singh, J. Kaushal, S.K. Tripathi, Appl. Phys. A Mater. Sci. Process. 125, 144 (2019)

    ADS  Google Scholar 

  23. S. Singh, J. Singh, S.K. Tripathi, Vacuum 165, 12 (2019)

    ADS  Google Scholar 

  24. B. Singh, J. Singh, J. Kaur, R.K. Moudgil, S.K. Tripathi, Phys. B Phys. Condens. Matter 490, 49 (2016)

    ADS  Google Scholar 

  25. V. Rajendran, S.A. Packiaseeli, S. Muthumari, R. Vijayalakshmi, Nanosyst. Phys. Chem. Math. 7, 699 (2016)

    Google Scholar 

  26. K.L. Chopra, Thin Film Phenomenon (McGraw-Hill, New York, 1969)

    Google Scholar 

  27. S.R.C.A. Beiser, S. Mahajan, Concepts of Modern Physics (Tata McGraw Hill Education Private Limited, New York, 2003)

    Google Scholar 

  28. F. Werner, J. Appl. Phys. 122, 135306 (2017)

    ADS  Google Scholar 

  29. B.G. Streetman, S.K. Banerjee, Solid, 6th edn. (PHI Learning Pvt. Ltd., New Delhi, 2009)

    Google Scholar 

  30. M.R. Burton, T. Liu, J. McGettrick, S. Mehraban, J. Baker, A. Pockett, T. Watson, O. Fenwick, M.J. Carnie, Adv. Mater. 30, 1801357 (2018)

    Google Scholar 

  31. V. Adalid, J. Undergrad. Res. Univ. Illinois Chicago 9, 57 (2016)

    Google Scholar 

  32. S.V. Faleev, F. Léonard, Phys. Rev. B Condens. Matter Mater. Phys. 77, 214304 (2008)

    ADS  Google Scholar 

  33. G. Neeli, D.K. Behara, M.K. Kumar, Int. J. Sci. Res. 5, 1833 (2016)

    Google Scholar 

  34. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, G. Ottaviani, J. Solid State Chem. 193, 19 (2012)

    ADS  Google Scholar 

  35. N. Chen, M. Scimeca, S.J. Paul, S.B. Hafiz, Z. Yang, X. Liu, F. Yang, D. Ko, A. Sahu, Nanoscale Adv. 2, 368 (2020)

    ADS  Google Scholar 

  36. J. Gao, L. Miao, H. Lai, X. Wang, K. Koumoto, H. Cai, iScience 23, 100753 (2020)

    ADS  Google Scholar 

  37. S. Singh, S. Jindal, S.K. Tripathi, J. Appl. Phys. 127, 055103 (2020)

    ADS  Google Scholar 

  38. F.F. Alieve, M.B. Jafarov, V.I. Eminova, Fiz. Tekh. Poluprovodn. 43, 1013 (2009)

    Google Scholar 

  39. K. Sieradzki, K. Bailey, T.L. Alford, Appl. Phys. Lett. 79, 3401 (2001)

    ADS  Google Scholar 

  40. T.L. Alford, L. Chen, K.S. Gadre, Thin Solid Films 429, 248 (2003)

    ADS  Google Scholar 

  41. J. Janek, B. Mogwitz, G. Beck, M. Kreutzbruck, L. Kienle, C. Korte, Prog. Solid State Chem. 32, 179 (2004)

    Google Scholar 

  42. B.C. Mohanty, S. Kasiviswanathan, Thin Solid Films 515, 2059 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

One of the co-authors Sukhdeep Singh is thankful to Council of Scientific and Industrial Research (CSIR) for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, S., Singh, S., Saini, G.S.S. et al. Enhanced thermopower in (013)-oriented silver selenide films produced by thermal annealing. Appl. Phys. A 126, 374 (2020). https://doi.org/10.1007/s00339-020-03534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03534-1

Keywords

Navigation