Abstract
In order to allow for multiscale modeling of complex systems, we focus on various approaches to modeling binary adsorption. We consider multiple methods of modeling the temporal response of general plasmonic sensors. We start from the analytical approach. The kinetics of adsorption and desorption is modeled both as a first order reaction and as a second-order reaction. The criteria for their validity and the choice between them in the case of two-component adsorption are established. Due to the nonlinearities of the second-order reactions and the lack of their analytical solutions, computer-aided modeling is considered next, also in multiple ways: the employment of numerical solvers, fitting of experimental results, the stochastic simulation algorithms and the employment of artificial neural networks (ANN). The examples we present illustrate the advantages and disadvantages of the particular approaches. The goal is to aid the concurrent multiscale modeling of adsorption-based devices. Machine learning in ANN performed here is used to estimate the equilibrium values of adsorbed quantities. The obtained results show that to train an ANN for the estimation of the equilibrium adsorption quantities the Levenberg–Marquardt and the Bayesian regularization algorithms are less efficient than the quasi-Newton BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm.












Similar content being viewed by others
References
W.J. Thomas, B. Crittenden, Adsorption Technology and Design (Elsevier Science and Technology Books, Amsterdam, 1998)
J. Toth, Adsorption: Theory, Modeling, and Analysis (Marcel Dekker Incorporated, NY, 2002)
A. Dabrowski, Adv. Colloid Interface Sci. 93, 135 (2001)
L. Zhou, Adsorption: Progress in Fundamental and Application Research (World Scientific, Singapore, 2007)
A.B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, J. Vörös, Anal. Bioanal. Chem. 402, 1773 (2012)
S.Y. Lagergren, Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe (Kungliga Svenska Vetenskapsakademiens, Hadlingar, 1898)
R.L. Tseng, F.C. Wu, R.S. Juang, J Taiwan Inst. Chem. E 41, 661 (2010)
Y. Liu, L. Shen, Langmuir 24, 11625 (2008)
H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, J. Zhejiang Univ. Sci. A 10, 716 (2009)
W. Stroberg, S. Schnell, Math. Biosci. 287, 3 (2017)
O. Jakšić, I. Jokić, Z. Jakšić, Ž. Čupić, L. Kolar-nić, Phys. Scr. 2014, 014047 (2014)
F. Amato, J.L. González-Hernández, J. Havel, Talanta 93, 72 (2012)
Y.W. Huang, M.Q. Chen, Q.H. Li, J. Therm. Anal. Calorim. 138(1), 451 (2019)
E. Weinan, Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011)
Z.W. Ulissi, M.T. Tang, J. Xiao, X. Liu, D.A. Torelli, M. Karamad, K. Cummins, C. Hahn, N.S. Lewis, T.F. Jaramillo, K. Chan, J.K. Nørskov, ACS Catal. 7, 6600 (2017)
J.L. González-Hernández, M.M. Canedo, S. Encinar, J. Math. Chem. 51, 1634 (2013)
J.L. González-Hernández, M.M. Canedo, S. Encinar, MATCH Commun. Math. Comput. Chem. 79, 619 (2018)
V.S.R.P. Kumar, K.A. Malla, B. Yerra, K.S. Rao, Appl. Water Sci. 9, 44 (2019)
M.R. Fagundes-Klen, P. Ferri, T.D. Martins, C.R.G. Tavares, E.A. Silva, Biochem. Eng. J. 34, 136 (2007)
R. Anderson, J. Rodgers, E. Argueta, A. Biong, D.A. Gómez-Gualdrón, Chem. Mater. 30, 6325 (2018)
B. Gezer, U. Kose, D. Zubov, O. Deperlioglu, P. Vasant, Wirel. Netw. (2019). https://doi.org/10.1007/s11276-019-02035-1
M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, V.K. Gupta, Res. Chem. Intermed. 44, 2929 (2018)
S. Ullah, M.A. Assiri, A.G. Al-Sehemi, M.A. Bustam, M. Sagir, F.A. Abdulkareem, M.R. Raza, M. Ayoub, A. Irfan, Int. J. Environ. Res. 14, 43 (2020)
H. Barki, L. Khaouane, S. Hanini, Kem. u Ind. 68, 289 (2019)
O.M. Jakšić, Z.S. Jakšić, Ž.D. Čupić, D.V. Randjelović, L.Z. Kolar-Anić, Sens. Actuators B Chem. 190, 419 (2014)
O. Jakšić, Ž. Čupić, Z. Jakšić, D. Randjelović, L. Kolar-Anić, Russ. J. Phys. Chem. A 87, 2134 (2013)
O.M. Jakšić, D.V. Randjelović, Z.S. Jakšić, Ž.D. Čupić, L.Z. Kolar-Anić, Chem. Eng. Res. Des. 92, 91 (2014)
C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1985)
D.T. Gillespie, A. Hellander, L.R. Petzold, J. Chem. Phys. 138, 170901 (2013)
D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)
D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)
D.T. Gillespie, J. Chem. Phys. 115, 1716 (2001)
S. Lampoudi, D.T. Gillespie, L.R. Petzold, J. Chem. Phys. 130, 094104 (2009)
D.T. Gillespie, J. Chem. Phys. 113, 297 (2000)
D.T. Gillespie, J. Phys. Chem. A 106, 5063 (2002)
D.T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007)
H. Li, Y. Cao, L.R. Petzold, D.T. Gillespie, Biotechnol. Prog. 24, 56 (2008)
D.D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998)
S. Maier, Plasmonics. Fundamentals and Applications (Springer, Berlin, 2007)
A. Felinger, J. Chromatogr. A 1184, 20 (2008)
L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Langmuir 14, 5636 (1998)
C.L. Byard, X. Han, S.B. Mendes, Anal. Chem. 84, 9762 (2012)
R. Wood, Philos. Mag. 4, 396 (1902)
H. Raether, Springer Tracts Mod. Phys. 111, 1 (1988)
E. Kretschmann, H. Raether, Z. Naturforsch. 23, 2135 (1968)
M.S. Mehand, G. De Crescenzo, B. Srinivasan, J. Mol. Recognit. 25, 208 (2012)
M.S. Mehand, B. Srinivasan, G. De Crescenzo, Sci. Rep. 5, 1 (2015)
O. Jakšić, Mendeley Data http://dx.doi.org/10.17632/R9YT6TJZNJ.1 (2018)
O. Jakšić, Mendeley Data http://dx.doi.org/10.17632/w78xsxmg8d.1 (2019)
O. Jakšić, Mendeley Data http://dx.doi.org/10.17632/pwsc2jgwzk.1 (2019)
O. Jakšić, Harvard Dataverse V4. https://doi.org/10.7910/DVN/5VYJ5O (2018)
G. Freiling, G. Jank, H. Abou-Kandil, Linear Algebra Appl. 241–243, 291 (1996)
M.A. Lohe, J. Math. Phys. 60, 072701 (2019)
J.A. Samath, N. Selvaraju, I.J.C.A. Int, J. Comput. Appl. 1, 48 (2010)
T.C. Choy, Effective Medium Theory: Principles and Applications (Oxford University Press, Oxford, 2016)
G. Canziani, W. Zhang, D. Cines, A. Rux, S. Willis, G. Cohen, R. Eisenberg, I. Chaiken, Methods 19, 253 (1999)
O.M. Jakšić, Z. Jakšić, M.B. Rašljić, L.Z. Kolar-Anić, Adv. Math. Phys. 2019, 1 (2019)
T. Stanković, N. Dalarsson, and O. Jakšić, in 4th Symposium Mathematical Applications 24. i 25. Maj 2013, 99 (2014)
M. Holmes, fits(f,xd,yd,p0,n,m) (MATLAB Cent. File Exch. Retr. March 31 2020) https://www.mathworks.com/matlabcentral/fileexchange/72113-fits-f-xd-yd-p0-n-m
O. Jakšić, Mendeley Data http://dx.doi.org/10.17632/gfv2vzpx3p.1 (2020)
D. Jenkins, G. Peterson, Mendeley Data http://dx.doi.org/10.17632/n3s9f96jwp.1 (2011)
O. Jakšić, Mendeley Data http://dx.doi.org/10.17632/2jdnx2pfys.1 (2020)
Acknowledgements
This work is a part of the research funded by the Serbian Ministry of Education, Science and Technological Development.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jakšić, O., Jokić, I., Jakšić, Z. et al. The time response of plasmonic sensors due to binary adsorption: analytical versus numerical modeling. Appl. Phys. A 126, 342 (2020). https://doi.org/10.1007/s00339-020-03524-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-020-03524-3


