Skip to main content
Log in

Effect of Fe doping on microwave absorption performance of magnetic powder NdNi5

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Soft magnetic alloy powder NdNi5-xFex (x = 0.0, 0.1, 0.3, 0.4) was prepared by vacuum arc melting, homogenization annealing and ball milling methods. The reflection loss of NdNi5-xFex powders were discussed based on the structural morphology, measured hysteresis loops and electromagnetic parameters. The lattice distortion and the saturation magnetization of NdNi5-xFex powders increase and the formant of the electromagnetic parameter moves toward the low frequency. The absorption peak of reflection loss also moves toward low frequency. In addition, the Nd–Ni–Fe alloy powder can achieve the best absorption bandwidth, and the minimum reflection loss value of 1.29 GHz and − 29.29 dB, respectively, with the addition of Fe content is 0.1. Add Fe content appropriately, and adjusting the thickness can effectively improve the absorbing performance of the material in c-band, so the powder has a good application prospect in c-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Wang, J.I. Chang-Song, J.L. Yue, X.Z. Huang, D.U. Zuo-Juan, X.Z. Tang, University, C.S., Soft magnetic properties and electromagnetic shielding effectiveness of magnetic FeNi coated carbon fibers. Surf. Technol. 47(6), 174–180 (2018)

    Google Scholar 

  2. L.-J. Wang, J. Li, Y.-X. Liu, Preparation of electromagnetic shielding wood-metal composite by electroless nickel plating. J. For. Res. 17(1), 53–56 (2006)

    Article  Google Scholar 

  3. W. Feng-de, X. Peng, Y. Jing, H. Xin-quan, G. Qiang, W. Jian-qiang, L. Xiao-feng, Y. Shao-hua, Distribution of electromagnetic pollution in driver compartment of electric locomotive after rail speed elevated. J. Environ. Occup. Med. 31(1), 30–32 (2014)

    Google Scholar 

  4. G. Ganapathi Rao, B. Lakshmi Rekha, Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate–lithium ferrite solid solutions. J. Magn. Magn. Mater. 494(15), 165822 (2020)

    Google Scholar 

  5. G. Ganapathi Rao, B. Lakshmi Rekha, C. Arun Kumar, K.N. Chidambara Kumar, N. Gnana Praveena, D. Madhvaprasad, Studies on structural dielectric conductivity magnetic and magneto-electric properties of barium titanate doped with lithium ferrite. Phys. B Condens. Matter 543(15), 38–45 (2018)

    ADS  Google Scholar 

  6. G. Ganapathi Rao, B. Lakshmi Rekha, K.N. Chidambara Kumar, C. Arun Kumar, K. Samatha, D. Madhava Prasad, Investigations on multiferroic properties of BaTi0.9Zr0.1O3 substituted with Li0.5Fe2.5O4. J. Magn. Magn. Mater. 444(15), 444–450 (2017)

    Article  ADS  Google Scholar 

  7. G. Ganapathi Rao, B. Lakshmi Rekha, D. Madhav Prasad, C. Arun Kumar, K. Jayant, K. Samatha, Structural and magnetic properties of lithium ferrite substituted BaTi0.9Zr0.1O3 composite ceramics. J. Asian Ceram. Soc. 5(2), 109–112 (2017)

    Article  Google Scholar 

  8. T.A. Elwi, D.G. Rucker, H.M. Al-Rizzo, H.R. Khaleel, E. Dervishi, A.S. Biris, A dual frequency wearable MWCNT ink based spiral microstrip antenna. In NSTI Nanotech 2010 conference and Expo. pp 266–269 (2010).

  9. M.A. Jawad, M.A. Elwi, E.Y. Salih, T.A. Elwi, A. Zulkifly, Monitoring the dielectric properties and propagation conditions of mortar for modern wireless mobile networks. Prog. Electromagn. Res. Lett. 89, 91–97 (2020)

    Article  Google Scholar 

  10. T.A. Elwi, Z.A. Al-Hussain, O. Tawfeeq, Hilbert metamaterial printed antenna based on organic substrates for energy harvesting. IET Microw. Antennas Propag. 12(4), 1–8 (2019)

    Google Scholar 

  11. T.A. Elwi, Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates. Nat. Sci. Rep. 9(2174), 1–14 (2019)

    Google Scholar 

  12. T.A. Elwi, Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications. AEU Int. J. Electron. Commun. 101, 1–10 (2019)

    Article  Google Scholar 

  13. T.A. Elwi, B.A. Ahmed, A Fractal metamaterial based printed dipoles on a nickel oxide polymer palm fiber substrate for Wi-Fi applications. AEU Int. J. Electron. Commun. 96, 122–129 (2018)

    Article  Google Scholar 

  14. T.A. Elwi, A miniaturized folded antenna array for MIMO applications. Wirel. Pers. Commun. 98(2), 1871–1883 (2018)

    Article  Google Scholar 

  15. Y. Al-Naiemy, T.A. Elwi, H.R. Khaleel, H.M. Al-Rizzo, A systematic approach for the design, fabrication and testing of microstrip antennas using ink-jet printing technology. ISRN Commun. Netw. 132465, 1–11 (2012)

    Google Scholar 

  16. T.A. Elwi, H.M. Al-Rizzo, D.G. Rucker, E. Dervishi, Z. Li, A.S. Biris, Multi-walled carbon nanotube-based RF antennas. Inst. Phys. 2010 Nanotechnol. 21(4), 1–10 (2010)

    Google Scholar 

  17. W. Chu, Y. Wang, Y. Du, R. Qiang, C. Tian, X. Han, FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption. J. Mater. Sci. 52(23), 13636–13649 (2017). https://doi.org/10.1007/s10853-017-1439-1

    Article  Google Scholar 

  18. M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe 3 O 4 @MnO 2 composite microspheres. Chem. Eng. J. 304, 552–562 (2016). https://doi.org/10.1016/j.cej.2016.06.094

    Article  Google Scholar 

  19. H.S. Ji, H.Y. Ryu, S.M. Jeong, S.W. Cho, Fast electrochemical synthesis of NdNi5 hydrogen storage alloy in molten salt. Chem. Lett. 42(10), 1182–1184 (2013). https://doi.org/10.1246/cl.130538

    Article  Google Scholar 

  20. J.-L. Bobet, S. Pechev, B. Chevalier, B. Darriet, Structural and hydrogen sorption studies of NdNi5–xAlx and GdNi5–xAlx. J. Alloys Compd. 267(1), 136–141 (1998)

    Article  Google Scholar 

  21. Z. Guo, F. Sun, Y. Chen, Y. Mao, L. Wan, X. Yan, Y. Yang, W. Yuan, Synthesis, structure and superconductivity of FeS1–xSex (0 ≤ x ≤ 1) solid solution crystals. CrystEngComm 21(19), 2994–2999 (2019). https://doi.org/10.1039/c9ce00038k

    Article  Google Scholar 

  22. Y. Li, H. Cheng, N. Wang, S. Zhou, D. Xie, T. Li, Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites. J. Magn. Magn. Mater. 471, 346–354 (2019). https://doi.org/10.1016/j.jmmm.2018.09.101

    Article  ADS  Google Scholar 

  23. G. Ganapathi Rao, B. Lakshmi Rekha, K.N. Chidambara Kumar, D. Madhavaprasad, Influence of Sm and Nb on the structural, electric, magnetic and magneto-electric properties of BaTiO3–Li0.5Fe2.5O4 composite ceramics grown by the conventional solid state technique. J. Mater. Sci. Mater. Electron. 30, 1262–1274 (2019)

    Article  Google Scholar 

  24. P.N. Gnana, T. Ravindar, G. Ganapathi Rao, P.V. PrakashMadduri, A.V. Anupama, V. Veeraiah, Influence of Cr on structural, spectroscopic and magnetic properties of CoFe2O4 grown by the wet chemical method. Mater. Chem. Phys. 238(1), 121903 (2019). https://doi.org/10.1016/j.matchemphys.2019.121903

    Article  Google Scholar 

  25. N. Song, Y. Ke, H. Yang, H. Zhang, X.Q. Zhang, B. Shen, Z. Cheng, Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 3(1), 2045–2322 (2013). https://doi.org/10.1038/srep02291

    Article  Google Scholar 

  26. J. Yan, Y. Huang, P.B. Liu, C. Wei, Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption. J. Mater. Sci. Mater. Electron. 28(4), 3159–3167 (2017). https://doi.org/10.1007/s10854-016-5904-4

    Article  Google Scholar 

  27. H. Li, Y. Huang, G. Sun, X. Yan, Y. Yang, W. Jian, Z. Yue, Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures. J. Phys. Chem. C 114(22), 10088–10091 (2010)

    Article  Google Scholar 

  28. X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong, Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J. Magn. Magn. Mater. 405, 36–41 (2016). https://doi.org/10.1016/j.jmmm.2015.12.051

    Article  ADS  Google Scholar 

  29. Y. Yang, C. Xu, Y. Xia, T. Wang, F. Li, Synthesis and microwave absorption properties of FeCo nanoplates. J. Alloy. Compd. 493(1–2), 549–552 (2010). https://doi.org/10.1016/j.jallcom.2009.12.153

    Article  Google Scholar 

  30. H. Xu, W. Sun, Y. Gui, L. Wang, M. Yu, Q. Zhang, Electromagnetic loss properties of ZnO nanofibers. J. Mater. Sci. Mater. Electron. 27(12), 12846–12851 (2016). https://doi.org/10.1007/s10854-016-5419-z

    Article  Google Scholar 

  31. Z. Ma, Y. Zhang, C. Cao, J. Yuan, Q. Liu, J. Wang, Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys. B 406(24), 4620–4624 (2011). https://doi.org/10.1016/j.physb.2011.09.039

    Article  ADS  Google Scholar 

  32. A. Arora, S.B. Narang, Effect of La–Na Doping in Co–Ti substituted barium hexaferrite on electrical and X-Band microwave absorption properties. J. Electron. Mater. 47(8), 4919–4928 (2018). https://doi.org/10.1007/s11664-018-6349-8

    Article  ADS  Google Scholar 

  33. S. Waseem, S. Anjum, L. Mustafa, T. Zeeshan, Zohra N. Kayani, K. Javed, Structural, magnetic and optical investigations of Fe and Ni co-doped TiO2 dilute magnetic semiconductors. Ceram. Int. 44(15), 17767–17774 (2018). https://doi.org/10.1016/j.ceramint.2018.06.244

    Article  Google Scholar 

  34. Yuriy A. Zaharov, Valeriy M. Pugachev, Victor I. Ovcharenko, Kseniya A. Datiy, Anna N. Popova, Artem S. Bogomyakov, Phase composition and magnetic properties of nanostructured Fe–Co–Ni powders. Phys. Stat. Solidi B Basic Solid State Phys. 255(3), 0370–1972 (2008). https://doi.org/10.1002/pssb.201700175

    Article  Google Scholar 

  35. H.Y. Liu, Y.S. Li, Synthesis and microwave absorbing properties of Cobalt ferrite. IOP Conf. Ser. Mater. Sci. Eng. 292(1), 012062 (2018). https://doi.org/10.1088/1757-899x/292/1/012062

    Article  Google Scholar 

  36. J.I.A.O. Qingze, W.A.N.G. Yanfeng, H.A.O. Liang, L.I. Hansheng, Z.H.A.O. Yun, Synthesis of magnetic nickel ferrite microspheres and their microwave absorbing properties. Chem. Res. Chin. Univ. 32(4), 678–681 (2016)

    Article  Google Scholar 

  37. X. Guo, Z. Yao, H. Lin, J. Zhou, Y. Zuo, X. Xu, B. Wei, W. Chen, K. Qian, Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron@epoxy composites. J. Magn. Magn. Mater. 485, 244–250 (2019). https://doi.org/10.1016/j.jmmm.2019.04.059

    Article  Google Scholar 

Download references

Acknowledgment

Project supported by the National Natural Science Foundation of China (51361007), 2017 director fund of Guangxi Key Laboratory of wireless wideband communication and signal processing (GXKL06170107), Guangxi Key Laboratory of information materials (171016-Z, 191016-K and 191010-Z), Guangxi Key Laboratory of Information Materials (171016-Z), Innovation Project of GUET Graduate Education (2018YJCX87, 2019YCXS116) and the Talents Project of Guilin University of Electronic Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-kang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Jj., Pan, Sk., Cheng, Lc. et al. Effect of Fe doping on microwave absorption performance of magnetic powder NdNi5. Appl. Phys. A 126, 348 (2020). https://doi.org/10.1007/s00339-020-03521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03521-6

Keywords

Navigation