Skip to main content

Advertisement

Log in

Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrafast laser photoinscription of optical materials has seen a strong development in the recent years for a range of applications in integrated photonics. Fueled by its capability to confine energy in micro-domains of arbitrary geometries, it forecasts extensive potential in optical design. The process can locally modify the material structure and the electronic properties, changing in turn the refractive index. It thus lays down a powerful concept for three-dimensional modifications of materials, with the potential to design integrated optical functions. Using fused silica as model glass, this report discusses the physical mechanisms of photoinscription, outlining the possibility of refractive index engineering. We will review basic mechanisms of light propagation, excitation of matter, and energy relaxation concurring to material structural and photophysical modification. A dynamic perspective will be given, indicating relevant times for relaxing different forms of energy (electronic, thermal, etc.). The possibility to structure beyond diffraction limit will be explored, as well as the subsequent optical response of hybrid micro–nanostructures. Different irradiation geometries for photoinscription will be presented, pinpointing their potential to generate optical and photonic systems in three dimensions. Spatiotemporal pulse engineering can optimize the material response toward the achievement of accurate positive and negative index changes. An optimality concept can thus be defined for index design and present optimization concepts will be discussed. A particular potential derives from the utilization of non-diffractive beams with engineered dispersion. Finally, we indicate a range of application domains, from telecom to optofluidics and astrophotonics, outlining the potential of volume micro- and nanoprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Misawa, S. Juodkazis (eds.), 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Weinheim, 2006)

    Google Scholar 

  2. K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)

    Article  ADS  Google Scholar 

  3. K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006)

    Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    ADS  Google Scholar 

  5. E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882–884 (1997)

    ADS  Google Scholar 

  6. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, E.E.B. Cambell, Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials. Appl. Phys. Lett. 72, 1442–1444 (1998)

    ADS  Google Scholar 

  7. C.R. Giuliano, Laser-induced damage to dielectric materials. Appl. Phys. Lett. 5, 137–139 (1964)

    ADS  Google Scholar 

  8. R.W. Hopper, D.R. Uhlmann, Mechanism of inclusion damage in laser glass. J. Appl. Phys. 41, 4023 (1970)

    ADS  Google Scholar 

  9. D.W. Fradin, M. Bass, Comparison of laser-induced surface and bulk damage. Appl. Phys. Lett. 22, 157–159 (1973)

    ADS  Google Scholar 

  10. E. Yablonovitch, N. Bloembergen, Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett. 29, 907–910 (1972)

    ADS  Google Scholar 

  11. A. Schmid, P. Kelly, P. Bräunlich, Optical breakdown in alkali halides. Phys. Rev. B 16, 4569 (1977)

    ADS  Google Scholar 

  12. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978)

    ADS  Google Scholar 

  13. C.G. Askins, T.-E. Tsai, G.M. Williams, M.A. Putnam, M. Bashkansky, E.J. Friebele, Fiber Bragg reflectors prepared by a single excimer pulse. Opt. Lett. 17, 833–835 (1992)

    ADS  Google Scholar 

  14. D. von der Linde, H. Schüller, Breakdown threshold and plasma formation in femtosecond laser–solid interaction. J. Opt. Soc. Am. B 13, 216–222 (1996)

    ADS  Google Scholar 

  15. R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, Temporal pulse tailoring in ultrafast laser manufacturing technologies, in Laser Precision Microfabrication, vol. 135, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Heidelberg, 2010), pp. 121–144

    Google Scholar 

  16. R. Stoian, C. Mauclair, Photoinscription par laser à impulsions ultrabrèves pour des systèmes optiques 3D. Tech. Eng. E6312 (2018)

  17. M. Wollenhaupt, A. Assion, T. Baumert, Femtosecond laser pulses: linear properties, manipulation, generation and measurement, in Springer Handbook of Lasers and Optics, ed. by F. Trägger (Springer, Berlin, 2007), pp. 937–983

    Google Scholar 

  18. P. Balling, J. Schou, Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep. Prog. Phys. 76, 036502 (2013)

    ADS  Google Scholar 

  19. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  20. C.B. Schaffer, Interaction of femtosecond laser pulses with transparent materials, Ph. Thesis (Harvard University, 2001)

  21. W. Franz, Photon-assisted tunneling (Franz-Keldysh Effect), in Tunneling Phenomena in Solids (Springer, 1969), pp. 207–217

  22. F.A. Buot, Zener effect, in Wiley Encyclopedia of Electrical and Electronics Engineering (2014), pp. 1–32

  23. G. Orlando, C.R. McDonald, N.H. Protik, G. Vampa, T. Brabec, Tunnelling time, what does it mean? J. Phys. B At. Mol. Opt. Phys. 47, 204002 (2014)

    ADS  Google Scholar 

  24. D.M. Simanovskii, H.A. Schwettman, Midinfrared optical breakdown in transparent dielectrics. Phys. Rev. Lett. 91, 107601 (2003)

    ADS  Google Scholar 

  25. A.P. Joglekar, H. Liu, G.J. Spooner, E. Meyhöfer, G. Mourou, A.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B Laser Opt. 77, 25–30 (2003)

    Google Scholar 

  26. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996)

    ADS  Google Scholar 

  27. J.C. Miller (ed.), Laser Ablation: Principles and Applications. Springer Series in Materials Science, vol. 26 (Springer, Berlin, 1994)

    Google Scholar 

  28. B. Rethfeld, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004)

    ADS  Google Scholar 

  29. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Dynamic temporal pulse shaping in advanced ultrafast laser material processing. Appl. Phys. A Mater. Sci. Process. 77, 265–269 (2003)

    ADS  Google Scholar 

  30. D. Du, X. Liu, G. Korn, G. Mourou, Laser-induced breakdown by impact ionization in SiO\(_2\) with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994)

    Article  ADS  Google Scholar 

  31. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B 61, 11437–11450 (2000)

    Article  ADS  Google Scholar 

  32. A. Yamada, K. Yabana, Multiscale time-dependent density functional theory for a unified description of ultrafast dynamics: pulsed light, electron, and lattice motions in crystalline solids. Phys. Rev. B 99, 245103 (2019)

    Article  ADS  Google Scholar 

  33. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  34. E. Abbe. H. Lawson, ed. Translated by Fripp HE. A contribution to the theory of the microscope and the nature of microscopic vision, in Proceedings of the Bristol Naturalists’ Society, vol. 1 (Williams & Northgate, London, 1876), pp. 200–261

  35. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2007)

    Google Scholar 

  36. A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz, Attosecond nonlinear polarization and light-matter energy transfer in solids. Nature 534, 86–90 (2016)

    Article  ADS  Google Scholar 

  37. J.H. Marburger, Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Article  ADS  Google Scholar 

  38. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101, 043506 (2007)

    Article  ADS  Google Scholar 

  39. J.B. Ashcom, R.R. Gattass, C.B. Schaffer, E. Mazur, Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica. J. Opt. Soc. Am. B 23, 2317–2322 (2006)

    Article  ADS  Google Scholar 

  40. G.N. Steinberg, Filamentray tracks formed in transparent optical glass by laser beam self-focusing. I. Experimental investigation. Phys. Rev. A 4, 1182–1194 (1971)

    ADS  Google Scholar 

  41. M.M.T. Loy, Y.R. Shen, Small-scale filaments in liquids and tracks of moving foci. Phys. Rev. Lett. 22, 994–997 (1969)

    ADS  Google Scholar 

  42. D. Arnold, E. Cartier, D.J. DiMaria, Theory of high-field electron transport and impact ionization in silicon dioxide. Phys. Rev. B 49, 10278–10297 (1994)

    ADS  Google Scholar 

  43. B.M. Penetrante, J.N. Bardsley, W.M. Wood, C.W. Siders, M.C. Downer, Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B 9, 2032–2040 (1992)

    ADS  Google Scholar 

  44. J. Liao, J.R. Gulley, Time-frequency control of ultrafast plasma generation in dielectrics. J. Opt. Soc. Am. B 31, 2973–2980 (2014)

    ADS  Google Scholar 

  45. N.M. Bulgakova, V.P. Zhukov, Y.P. Meshcheryakov, L. Gemini, J. Brajer, D. Rostohar, T. Mocek, Pulsed laser modification of transparent dielectrics: what can be foreseen and predicted by numerical simulations? J. Opt. Soc. Am. B 31, C11–C14 (2014)

    Google Scholar 

  46. K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, G. F. Bertsch, Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Phys. Rev. B 85, 045134 (2012)

    ADS  Google Scholar 

  47. N. Brouwer, B. Rethfeld, Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse. J. Opt. Soc. Am. B 31, C28–C35 (2014)

    Google Scholar 

  48. K. von Volkmann, T. Kampfrath, M. Krenz, M. Wolf, C. Frischkorn, Ultrafast dynamics of coherent optical phonons in \(\alpha\)-quartz, in Ultrafast Phenomena XVI, Springer Series in Chemical Physics, vol. 92 (Springer, Berlin Heidelberg, 2009), p. 235

  49. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003)

    ADS  Google Scholar 

  50. K.L. Yip, W.B. Fowler, Electronic structure of SiO\(_{2}\). II. Calculations and results. Phys. Rev. B 10, 1400–1408 (1974)

    ADS  Google Scholar 

  51. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Sub-picosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 55, 5799–5810 (1997)

    ADS  Google Scholar 

  52. L. Skuja, M. Hirano, H. Hosono, K. Kajihara, Defects in oxide glasses. Phys. Status Solidi c 2, 15–24 (2005)

    ADS  Google Scholar 

  53. A. Gusarov, D. Doyle, A. Hermanne, F. Berhmans, M. Fruit, G. Ulbrich, M. Blondel, Refractive-index changes caused by proton radiation in silicate optical glasses. Appl. Opt. 41, 678–684 (2002)

    ADS  Google Scholar 

  54. D.L. Griscom, E.J. Friebele, Fundamental radiation-induced defect centers in synthetic fused silicas: atomic chlorine, delocalized E’ centers, and a triplet state. Phys. Rev. B 34, 7524–7533 (1986)

    ADS  Google Scholar 

  55. M. Watanabe, S. Juodkazis, H. Sun, S. Matsuo, H. Misawa, Phys. Rev. B 60, 9959 (1999)

    ADS  Google Scholar 

  56. K. Mishchik, C. D’Amico, P.K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, R. Stoian, Ultrafast laser induced electronic and structural modifications in bulk fused silica. J. Appl. Phys. 213, 133502 (2013)

    ADS  Google Scholar 

  57. L. Bressel, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Observation of O\(_2\) inside voids formed in GeO\(_2\) glass by tightly-focused fs-laser pulses. Opt. Mat. Express 1, 1150–1157 (2011)

    ADS  Google Scholar 

  58. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, S. Kanehira, Formation of Si structure in glass with a femtosecond laser. Appl. Phys. A Mater Sci Process. 93, 183–188 (2008)

    ADS  Google Scholar 

  59. C. M. Pépin, E. Block, R. Gaal, J. Nillon, C. Hoenninger, P. Gillet, Y. Bellouard, Silicon formation in bulk silica through femtosecond laser engraving, ArXiv:1806.10802 (2018)

  60. O.M. Efimov, L.B. Glebov, K.A. Richardson, E. Van Stryland, T. Cardinal, S.H. Park, M. Couzi, J.L. Bruneel, Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Opt. Mater. 17, 379–386 (2001)

    ADS  Google Scholar 

  61. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallée, Direct femtosecond laser writing of waveguides in As\(_2\)S\(_3\) thin films. Opt. Lett. 29, 748–750 (2004)

    ADS  Google Scholar 

  62. C. Fiori, R.A.B. Devine, Evidence for a wide continuum of polymorphs in a-SiO\(_2\). Phys. Rev. B 33, 2972 (1986)

    ADS  Google Scholar 

  63. E.J. Friebele, P.L. Higby, Radiation effects in amorphous SiO\(_2\) for windows and mirror substrates, in Laser induced damage in optical materials: 1987, vol. 89, ed. by H.E. Banett, A.H. Guenther, D. Milam, B.E. Newman, M. Soileau (ASTM International, West Conshohocken, 1988)

  64. J. Chan, T. Huser, S. Risbud, D. Krol, Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 76, 367–372 (2003)

    ADS  Google Scholar 

  65. K.T. Park, K. Terakura, Y. Matsui, Theoretical evidence for a new ultra-high-pressure phase in SiO\(_2\). Nature 336, 670 (1988)

    ADS  Google Scholar 

  66. M. Lancry, B. Poumellec, A. Chabid-Erraji, M. Beresena, P.G. Kazansky, Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses. Opt. Mat. Express 1, 711–723 (2011)

    ADS  Google Scholar 

  67. R. Brückner, Properties and structure of vitreous silica. J. Non-Cryst. Solids 5, 123–175 (1970)

    ADS  Google Scholar 

  68. K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, Y. Ouerdane, A. Boukenter, J. Solis, R. Stoian, Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown glass. Opt. Mater. Express 3, 67–85 (2013)

    ADS  Google Scholar 

  69. C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.P. Colombier, R. Stoian, Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses. High-Power Laser Sci. Eng. 4, e46 (2016)

    Google Scholar 

  70. B. Poumellec, P. Niay, M. Douay, J.F. Bayon, The UV-induced refractive index grating in Ge:SiO\(_2\) preforms: additional CW experiments and the macroscopic origin of the change in index. J. Phys. D Appl. Phys. 29, 1842–1856 (1996)

    ADS  Google Scholar 

  71. R.E. Schenker, W.G. Oldham, Ultraviolet-induced densification in fused silica. J. Appl. Phys. 82, 1065 (1997)

    ADS  Google Scholar 

  72. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, S. Juodkazis, Femtosecond laser induced density changes in GeO\(_2\) and SiO\(_2\) glasses: fictive temperature effect. Opt. Mater. Express 1, 605–613 (2011)

    ADS  Google Scholar 

  73. T. Gorelik, M. Will, S. Nolte, A. Tünnermann, G. Glatzel, Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl. Phys. A Mater. Sci. Process. 76, 309–311 (2003)

    ADS  Google Scholar 

  74. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, Micromodification of element distribution in glass using femtosecond laser irradiation. Opt. Lett. 34, 136–138 (2009)

    ADS  Google Scholar 

  75. T. Toney-Fernandez, P. Haro-Gonzales, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, J. Solis, Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett. 38, 5248–5251 (2013)

    ADS  Google Scholar 

  76. J. Siegel, J.M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, J. Armengo, Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold. Appl. Phys. Lett. 86, 121109 (2005)

    ADS  Google Scholar 

  77. P.K. Velpula, M.K. Bhuyan, F. Courvoisier, H. Zhang, J.P. Colombier, R. Stoian, Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev. 10, 230–244 (2016)

    ADS  Google Scholar 

  78. D.G. Papazoglou, S. Tzortzakis, In-line holography for the characterization of ultrafast laser filamentation in transparent media. Appl. Phys. Lett. 93, 041120 (2008)

    ADS  Google Scholar 

  79. Y. Hayasaki, M. Isaka, A. Takita, S. Juodkazis, Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass. Opt. Express 19, 5725–5734 (2011)

    ADS  Google Scholar 

  80. K. Bergner, B. Seyfarth, K.A. Lammers, T. Ullsperger, S. Döring, M. Heinrich, M. Kumar, D. Flamm, A. Tünnermann, S. Nolte, Spatio-temporal analysis of glass volume processing using ultrashort laser pulses. Appl. Opt. 57, 4618–4632 (2018)

    ADS  Google Scholar 

  81. B. Momgaudis, V. Kudriasov, M. Vengris, A. Melninkaitis, Quantitative assessment of nonlinearly absorbed energy in fused silica via time-resolved digital holography. Opt. Express 27, 7699–7711 (2019)

    ADS  Google Scholar 

  82. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass. Opt. Express 15, 5674–5686 (2007)

    ADS  Google Scholar 

  83. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)

    ADS  Google Scholar 

  84. J. Zhang, M. Gecevičius, M. Beresna, P.G. Kazansky, Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014)

    ADS  Google Scholar 

  85. A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates. Phys. Rev. B 77, 104205 (2008)

    ADS  Google Scholar 

  86. V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005)

    ADS  Google Scholar 

  87. S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Aray, Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)

    ADS  Google Scholar 

  88. F. Chen, J.R. Vazquez de Aldana, Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 8, 251–275 (2014)

    ADS  Google Scholar 

  89. O. Caulier, D. Le Coq, V. Bychkov, P. Masselin, Direct laser writing of buried waveguide in As\(_2\)S\(_3\) glass using a helical sample translation. Opt. Lett. 38, 4213–4125 (2013)

    ADS  Google Scholar 

  90. A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29, 1840–1842 (2004)

    ADS  Google Scholar 

  91. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, G. Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20(7), 1559–1567 (2003)

    ADS  Google Scholar 

  92. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett. 28, 55–57 (2003)

    ADS  Google Scholar 

  93. M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)

    ADS  Google Scholar 

  94. P.S. Salter, A. Jesacher, J.B. Spring, B.J. Metcalf, N. Thomas-Peter, R.D. Simmonds, N.K. Langford, I.A. Walmsley, M.J. Booth, Adaptive slit beam shaping for direct laser written waveguides. Opt. Lett. 37, 470–472 (2012)

    ADS  Google Scholar 

  95. R. Stoian, Optimizing laser-induced refractive index changes in optical glasses via spatial and temporal adaptive beam engineering, in Femtosecond Laser Machining. Springer Topics in Applied Physics, vol. 123, ed. by R. Osellame, et al. (Springer, Berlin, 2012), pp. 67–91

    Google Scholar 

  96. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt. Express 16, 5481–5492 (2008)

    ADS  Google Scholar 

  97. M.J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, S. Miyata, Predictive aberration correction for multilayer optical data storage. Appl. Phys. Lett. 88, 031109 (2006)

    ADS  Google Scholar 

  98. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I.V. Hertel, R. Stoian, Dynamic ultrafast laser beam spatial tailoring for parallel micromachining of photonic devices in bulk transparent materials. Opt. Express 17, 3531–3542 (2009)

    ADS  Google Scholar 

  99. S. Hasegawa, Y. Hayasaki, Adaptive optimization of a hologram in holographic femtosecond laser processing system. Opt. Lett. 34, 22–24 (2009)

    ADS  Google Scholar 

  100. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides. Opt. Lett. 36, 1065–1067 (2011)

    ADS  Google Scholar 

  101. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, B. Loiseaux, Programmable focal spot shaping of amplified femtosecond laser pulses. Opt. Lett. 30, 1479–1481 (2005)

    ADS  Google Scholar 

  102. J.A. Rodrigo, T. Alieva, E. Abramochkin, I. Castro, Shaping of light beams along curves in three dimensions. Opt. Express 18, 20544–20555 (2013)

    Google Scholar 

  103. F. Courvoisier, R. Stoian, A. Couairon, Ultrafast laser micro-and nano-processing with nondiffracting and curved beams. Opt. Laser Eng. 80, 125–137 (2016)

    ADS  Google Scholar 

  104. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, R. Furfaro, J.M. Dudley, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 081102 (2010)

    ADS  Google Scholar 

  105. M.K. Bhuyan, P.K. Velpula, J.P. Colombier, T. Olivier, N. Faure, R. Stoian, Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp controlled ultrafast laser Bessel beams. Appl. Phys. Lett. 104, 021107 (2014)

    ADS  Google Scholar 

  106. P. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245–249 (1997)

    ADS  Google Scholar 

  107. C. Mauclair, Spatio-temporal ultrafast laser tailoring for bulk functionalization of transparent materials, Ph.D. Thesis (Université Jean Monnet, St. Etienne, Freie Universität Berlin, 2010)

  108. C. Mauclair, M. Zamfirescu, J. P. Colombier, G. Cheng, K. Mishchik, E. Audouard, R. Stoian, Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. Opt. Express 20, 12997 (2012)

    ADS  Google Scholar 

  109. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, E.E.B. Campbell, Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl. Phys. Lett. 80, 353–355 (2002)

    ADS  Google Scholar 

  110. M. Zhao, J. Hu, L. Jiang, K. Zhang, P. Liu, Y. Lu, Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control. Sci. Rep. 5, 13202 (2015)

    ADS  Google Scholar 

  111. K. Mishchik, C. Javaux Leger, O. Dematteo Caulier, S. Skupin, B. Chimier, C. Hönninger, R. Kling, G. Duchateau, J. Lopez, Ultrashort pulse laser cutting of glass by controlled fracture propagation. J. Laser Micro Nanoeng. 11, 66–70 (2016)

    Google Scholar 

  112. D. Esser, S. Rezaei, J. Li, P.R. Herman, J. Gottmann, Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses. Opt. Express 19, 25632–25642 (2011)

    ADS  Google Scholar 

  113. B. Mills, D.J. Heath, J.A. Grant-Jacob, R.W. Eason, Predictive capabilities for laser machining via a neuronal network. Opt. Express 26, 17245–17253 (2018)

    ADS  Google Scholar 

  114. J. Squier, J. Thomas, E. Bock, C. Durfee, S. Backus, High average power Yb:CaF\(_2\) femtosecond amplifier with integrated simultaneous spatial and temporal focusing for laser material processing. Appl. Phys. A Mater Sci. Process. 114, 209–214 (2014)

    ADS  Google Scholar 

  115. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108 (2010)

    ADS  Google Scholar 

  116. B. Sun, P.S. Salter, C. Roider, A. Jesacher, J. Strauss, J. Heberle, M. Schmidt, M.J. Booth, Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl. 7, 17117 (2018)

    Google Scholar 

  117. A.P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, A.J. Hunt, Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. 101, 5856–5861 (2004)

    ADS  Google Scholar 

  118. Y.V. White, X. Li, Z. Sikorski, L.M. Davis, W. Hofmeister, Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO\(_2\). Opt. Express 16, 14411–14420 (2008)

    ADS  Google Scholar 

  119. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt. Express 15, 17855–17862 (2007)

    ADS  Google Scholar 

  120. F. Qin, K. Huang, J. Wu, J. Teng, C.W. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29, 1602721 (2017)

    Google Scholar 

  121. K. Mishchik, Y. Petit, E. Brasselet, A. Royon, T. Cardinal, L. Canioni, Patterning linear and nonlinear optical properties of photosensitive glasses by femtosecond structured light. Opt. Lett. 40, 201–204 (2015)

    ADS  Google Scholar 

  122. D.E. Grady, The spall strength of condensed matter. J. Mech. Phys. Solids 1988(36), 353–384 (1988)

    ADS  Google Scholar 

  123. C. Hnatovsky, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 87, 014104 (2005)

    ADS  Google Scholar 

  124. A. Rudenko, J.P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7, 12306 (2017)

    ADS  Google Scholar 

  125. R. Taylor, H. Hnatovsky, E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev. 2, 26–46 (2008)

    ADS  Google Scholar 

  126. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.C. Poulin, F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation. Laser Photonics Rev. 7, 953–962 (2007)

    ADS  Google Scholar 

  127. R. Buschlinger, S. Nolte, U. Peschel, Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89, 184306 (2014)

    ADS  Google Scholar 

  128. A. Rudenko, J.P. Colombier, T.E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93, 075427 (2016)

    ADS  Google Scholar 

  129. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion in the bulk of a sapphire crystal: evidence of Mb pressures. Phys. Rev. Lett. 96, 166101 (2006)

    ADS  Google Scholar 

  130. D. Faccio, E. Rubino, A. Lotti, A. Couairon, A. Dubietis, G. Tamos̆auskas, D.G. Papazoglou, S. Tzortzakis, Phys. Rev. A 85, 033829 (2012)

    ADS  Google Scholar 

  131. M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Ultrafast laser nanostructuring in bulk silica, a “slow” microexplosion. Optica 4, 951–958 (2017)

    ADS  Google Scholar 

  132. R. Stoian, M.K. Bhuyan, A. Rudenko, J.P. Colombier, G. Cheng, High-resolution material structuring using ultrafast laser non-diffractive beams. Adv. Phys. X 4, 1659180 (2019)

    Google Scholar 

  133. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A Mater Sci. Process. 77, 109–111 (2003)

    ADS  Google Scholar 

  134. P.R. Herman, K.P. Chen, P. Corkum, A. Naumov, S. Ng, J. Zhang, Advanced lasers for photonic device microfabrication. RIKEN Rev. 32, 31–35 (2001)

    Google Scholar 

  135. S. Gross, M.J. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015)

    Google Scholar 

  136. A.M. Streltsov, N.F. Borelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses. Opt. Lett. 26, 42–43 (2001)

    ADS  Google Scholar 

  137. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)

    ADS  Google Scholar 

  138. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Opt. Express 13, 10552–10557 (2005)

    ADS  Google Scholar 

  139. M. Thiel, G. Flachenecker, W. Schade, Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass. Opt. Lett. 40, 1266–1269 (2015)

    ADS  Google Scholar 

  140. S. Minardi, G. Cheng, C. D’Amico, R. Stoian, Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass. Opt. Lett. 40, 257–259 (2015)

    ADS  Google Scholar 

  141. R. Stoian, C. D’Amico, M. Bhuyan, G. Cheng, Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics. J. Opt. Laser Technol. 80, 93 (2016)

    ADS  Google Scholar 

  142. S. Gross, N. Riesen, J.D. Love, M.J. Withford, Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev. 8(5), L81–L85 (2014)

    ADS  Google Scholar 

  143. R.R. Thomson, T.A. Birks, S.G. Leon-Saval, A.K. Kar, J. Bland-Hawthorn, Ultrafast laser inscription of an integrated photonic lantern. Opt. Express 19, 5698–5705 (2011)

    ADS  Google Scholar 

  144. D. Noordegraaf, P.M.W. Skovgaard, M.D. Nielsen, J. Bland-Hawthorn, Efficient multi-mode to singlemode coupling in a photonic lantern. Opt. Express 17, 1988–1994 (2009)

    ADS  Google Scholar 

  145. A. Martinez, M. Dubov, I. Krushchev, I. Bennion, Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004)

    ADS  Google Scholar 

  146. G.D. Marshall, A. Ams, M. Withford, Direct laser written waveguide-Bragg gratings in bulk fused silica. Opt. Lett. 31, 2690–2691 (2006)

    ADS  Google Scholar 

  147. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, A. Tünnermann, Nonlinear refractive index of fs-laser-written waveguides in fused silica. Opt. Express 14(6), 2151–2157 (2006)

    ADS  Google Scholar 

  148. X. He, C. Fan, B. Poumellec, Q. Liu, H. Zeng, F. Brisset, G. Chen, X. Zhao, M. Lancry, Size-controlled oriented crystallization in SiO\(_2\)-based glasses by femtosecond laser irradiation. J. Opt. Soc. Am. B 31, 376–381 (2014)

    ADS  Google Scholar 

  149. S.J. Beecher, R.R. Thomson, N.D. Psaila, Z. Sun, T. Hasan, A.G. Rozhin, A.C. Ferrari, A.K. Kar, 320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber. Appl. Phys. Lett. 97, 111114 (2010)

    ADS  Google Scholar 

  150. W. Watanabe, D. Kuroda, K. Itoh, J. Nishii, Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt. Express 10(19), 978–983 (2002)

    ADS  Google Scholar 

  151. F. Sima, K. Sugioka, R. Martinez Vazquez, R. Osellame, L. Keleman, P. Ormos, Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 7, 613–634 (2017)

    Google Scholar 

  152. N. Jovanovici, P.G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J.S. Lawrence, A. Lehman, C. Neil, J.G. Robertson, G.D. Marshall, M. Ireland, A. Fuerbach, M.J. Withford, Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging. Mon. Not. R. Astron. Soc. 427, 806–815 (2012)

    ADS  Google Scholar 

  153. R. Osellame, H.J.W. Hoekstra, G. Cerullo, M. Pollnau, Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev. 5, 442–463 (2011)

    ADS  Google Scholar 

  154. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E.G. Gamaly, Y. Liu, O.A. Louchev, K. Kitamura, Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3. Appl. Phys. Lett. 89, 062903 (2006)

    ADS  Google Scholar 

  155. Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R.R. Thomson, C. Pépin, P. Gillet, Y. Cheng, Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica 3, 1285–1293 (2016)

    Article  ADS  Google Scholar 

  156. R.R. Thomson, H.T. Bookey, N.D. Psaila, A. Fender, S. Campbell, S. Macpherson, J.S. Barton, D.T. Reid, A.K. Kar, Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express 15, 11691–11697 (2007)

    Article  ADS  Google Scholar 

  157. P. Mitchell, G. Brown, R.R. Thomson, N. Psaila, A. Kar, 57 channel (\(19\times 3\)) spatial multiplexer fabricated using direct laser inscription, in Optical Fiber Communications Conference and Exhibition (OFC), M3K.5 (2014)

  158. B. Guan, B. Ercan, N.K. Fontaine, R.P. Scott, S.J.B. Yoo, Mode-group-selective photonic lantern based on integrated 3D devices fabricated by ultrafast laser inscription, in Optical Fiber Communications Conference and Exhibition (OFC), 1, W2A.16 (2015)

  159. N. Riesen, S. Gross, J.D. Love, M.J. Withford, Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855–29861 (2014)

    Article  ADS  Google Scholar 

  160. B. Guan, R. Scott, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Capuzzo, F. Klemens, B. Keller, M. Earnshaw, S.J.B. Yoo, Free-space coherent optical communication with orbital angular, momentum multiplexing/ demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express 22, 145–156 (2014)

    Article  ADS  Google Scholar 

  161. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses. Opt. Lett. 32, 1536–1548 (2007)

    Article  ADS  Google Scholar 

  162. R. Martinez-Vazquez, R. Osellame, D. Nolli, C. Dongre, H. Van der Vlekkert, R. Ramponi, M. Pollnau, G. Verullo, Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab Chip 9, 91–96 (2009)

    Article  Google Scholar 

  163. J. Bland-Hawthorn, P. Kern, Astrophotonics: a new era for astronomical instruments. Opt. Express 17, 1880–1884 (2009)

    Article  ADS  Google Scholar 

  164. R.R. Thomson, A.K. Kar, J. Allington-Smith, Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express 17, 1963–1969 (2009)

    ADS  Google Scholar 

  165. J. Tepper, L. Labadie, R. Diener, S. Minardi, J.U. Pott, R.R. Thomson, S. Nolte, Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands. Astron. Astrophys. 602, A66 (2017)

    ADS  Google Scholar 

  166. R.J. Harris, D.G. MacLachlan, D. Choudry, T.J. Morris, E. Gendron, A.G. Basden, G. Brown, J.R. Allington-Smith, R.R. Thomson, Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy. Mon. Not. R. Astron. Soc. 450, 428–434 (2015)

    ADS  Google Scholar 

  167. A. Saviuk, S. Minardi, F. Dreisow, S. Nolte, T. Pertsch, 3D-integrated optics component for astronomical spectro-interferometry. Appl. Opt. 52, 4556–4565 (2013)

    ADS  Google Scholar 

  168. R. Stoian, M.K. Bhuyan, G. Cheng, G. Zhang, R. Meyer, F. Courvoisier, Ultrafast Bessel beams; advanced tools for laser material processing. Adv. Opt. Technol. 7, 165–174 (2018)

    ADS  Google Scholar 

  169. G. Zhang, G. Cheng, C. D’Amico, R. Stoian, Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams. Opt. Lett. 43, 2161–2164 (2018)

    ADS  Google Scholar 

  170. G. Martin, M.K. Bhuyan, J. Troles, C. D’Amico, R. Stoian, E. Le Coarer, Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers. Opt. Express 25, 8386–8397 (2017)

    ADS  Google Scholar 

  171. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J.M. Fedeli, P. Royer, Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photonics 1, 473–478 (2007)

    ADS  Google Scholar 

  172. R.J. Chapman, M. Santandrea, Z. Huang, G. Corrielli, A. Crespi, M.-H. Yung, R. Osellame, A. Peruzzo, Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun. 7, 11339 (2016)

    ADS  Google Scholar 

  173. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic Floquet topological insulators. Nature 496, 196–200 (2013)

    ADS  Google Scholar 

  174. M. Lucchini, S.A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, U. Keller, Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016)

    ADS  Google Scholar 

  175. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A.K. Kar, R. Osellame, Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photonics 13, 105–109 (2019)

    ADS  Google Scholar 

  176. R. Osellame, G. Cerullo, R. Ramponi (eds.), Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin, 2012)

    Google Scholar 

  177. K. Sugioka, Y. Cheng (eds.), Ultrafast Laser Processing: From Micro- to Nanoscale (Pan Stanford, Singapore, 2013)

    Google Scholar 

  178. T.D. Gerke, R. Piestun, Aperiodic volume optics. Nat. Photonics 4, 188–193 (2010)

    ADS  Google Scholar 

  179. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M.J. Steel, M.J. Withford, A. Szameit, Laser written circuits for quantum photonics. Laser Photonics Rev. 9, 363–384 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to all my colleagues, students and collaborators that, over the years, massively contributed to the results reviewed here: A. Mermillod-Blondin, J. Bonse, M. Boyle, S. Winkler, A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, I. V. Hertel, I. Burakov, N. M. Bulgakova, Yu. Meshcheryakov, A. Husakou, C. Mauclair, C. D’Amico, J. P. Colombier, E. Silaeva, A. Rudenko, A. Boukenter, Y. Ouerdane, C. Liebig, G. Cheng, G. Zhang, K. Mishchik, P. K. Velpula, M. K. Bhuyan, M. Somayaji, M. Royon, J. Troles, G. Martin, S. Minardi, F. Courvosier, R. Antoine and many others. I thank them all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Stoian.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoian, R. Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses. Appl. Phys. A 126, 438 (2020). https://doi.org/10.1007/s00339-020-03516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03516-3

Keywords

Navigation