Skip to main content
Log in

Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a design of tunable terahertz (THz) metamaterial (TTM) with single-band and dual-band filtering and switching characteristics. The proposed device is composed of face-to-face split-ring resonator (SRR) and a central bar. By moving the SRRs to change the gap between SRRs and central bar, the free spectrum ranges (FSR) could be bi-directionally broadened 0.14 THz and narrowed 0.19 THz at TE and TM modes, respectively. To control the coplanar moving central bar, the electromagnetic response of TTM device exhibits polarization-dependent characteristic. TTM shows the switching characteristic between single-band to dual-band resonance at TE mode and exhibits resonance-insensitive to the displacement of central bar at TM mode. These results open an avenue to be potentially used for detector, sensor, and switch in the THz-wave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004)

    ADS  Google Scholar 

  2. M.K. Liu, M. Susli, D. Silva, G. Putrino, H. Kala, S. Fan, M. Cole, L. Faraone, V.P. Wallace, W.J. Padilla, D.A. Powell, L.V. Shadrivov, M. Martyniuk, Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst. Nanoeng. 3, 17033 (2017)

    Google Scholar 

  3. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    ADS  Google Scholar 

  4. V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41 (2007)

    ADS  Google Scholar 

  5. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)

    ADS  Google Scholar 

  6. L. Xie, W. Gao, J. Shu, Y. Ying, J. Kono, Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci. Rep. 5, 8671 (2015)

    ADS  Google Scholar 

  7. R. Xu, X. Liu, Y.S. Lin, Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures. Results Phys. 13, 102176 (2019)

    Google Scholar 

  8. T. Hu, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43, 225102 (2010)

    ADS  Google Scholar 

  9. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999)

    ADS  Google Scholar 

  10. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    ADS  Google Scholar 

  11. F. Lu, H. Ou, Y. Liao, F. Zhu, Y.S. Lin, Actively switchable terahertz metamaterial. Results Phys. 15, 102756 (2019)

    Google Scholar 

  12. X. Zhang, Y.S. Lin, Actively electromagnetic modulation of IHI-shaped terahertz metamaterial with high-efficiency switching characteristic. Results Phys. 15, 120532 (2019)

    Google Scholar 

  13. N. Chikhi, M. Lisitskiy, G. Papari, V. Tkachenko, A. Andreone, A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci. Rep. 6, 34536 (2016)

    ADS  Google Scholar 

  14. Z. Xu, Y.S. Lin, A stretchable terahertz parabolic-shaped metamaterial. Adv. Opt. Mater. 7(12), 1900379 (2019)

    Google Scholar 

  15. Y. Yu, Y.S. Lin, Multi-functional terahertz metamaterial using symmetrical and asymmetrical electric split-ring resonator. Results Phys. 13, 102321 (2019)

    Google Scholar 

  16. Y.S. Lin, S. Liao, X. Liu, Y. Tong, Z. Xu, R. Xu, D. Yao, Y. Yu, Tunable terahertz metamaterial by using three-dimensional double split-ring resonators. Opt. Laser Technol. 112, 215–221 (2019)

    ADS  Google Scholar 

  17. W.Q. Cao, B.N. Zhang, A.J. Liu, T.B. Yu, D.S. Guo, Y. Wei, Broadband high-gain periodic endfire antenna by using I-Shaped Resonator (ISR) Structures. IEEE Antenn Wirel. Propag. 11, 1470–1473 (2012)

    ADS  Google Scholar 

  18. K. Kishor, M.N. Baitha, R.K. Sinha, B. Lahiri, Tunable negative refractive index metamaterial from V-shaped SRR structure: fabrication and characterization. J. Opt. Soc. Am. B 31, 1410–1414 (2014)

    ADS  Google Scholar 

  19. S. Cheng, Z. Xu, D. Yao, X. Zhang, Z. Zhang, Y.S. Lin, Electromagnetically induced transparency in terahertz complementary spiral-shape metamaterial. OSA Continuum 2(7), 2137–2144 (2019)

    Google Scholar 

  20. L. Qi, C. Li, G. Fang, Tunable terahertz metamaterial absorbers using active diodes. Int. J. Electromagn. Appl. 4, 57–60 (2014)

    Google Scholar 

  21. H. Liu, Z.H. Wang, L. Li, Y.X. Fan, Z.Y. Tao, Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci. Rep. 9, 5751 (2019)

    ADS  Google Scholar 

  22. Z. Yi, H. Lin, G. Niu, X.F. Chen, Z.G. Zhou, X. Ye, T. Duan, Y. Yi, Y.J. Tang, Y.G. Yi, Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle polarization-tolerance. Results Phys. 13, 102149 (2019)

    Google Scholar 

  23. F. Ling, Z.Q. Zhong, R.S. Huang, B. Zhang, A broadband tunable terahertz negative refractive index metamaterial. Sci. Rep. 8, 9843 (2018)

    ADS  Google Scholar 

  24. B. Zhu, Y.J. Feng, J.M. Zhao, C. Huang, T.A. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97, 051906 (2010)

    ADS  Google Scholar 

  25. J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 043049 (2013)

    ADS  Google Scholar 

  26. J. Han, A. Lakhtakia, Semiconductor split-ring resonators for thermally tunable terahertz metamaterials. J. Mod. Opt. 56, 554–557 (2009)

    MATH  ADS  Google Scholar 

  27. Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.S. Xie, K. Chen, Y.L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97, 021111 (2010)

    ADS  Google Scholar 

  28. R. Jiang, Z.R. Wu, Z.Y. Han, H.S. Jung, HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial. Chin. Phys. B 25, 106803 (2016)

    ADS  Google Scholar 

  29. Z. Xu, Z. Lin, S. Cheng, Y.S. Lin, Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic. Opt. Lett. 44(16), 3944–3947 (2019)

    Google Scholar 

  30. Z. Zhang, X. Zhang, Z. Liang, S. Cheng, P. Liu, Y.S. Lin, Reconfigurable double C-shape metamaterial (DCM) for a terahertz resonator. OSA Continuum 2(11), 3026–3036 (2019)

    Google Scholar 

  31. Y.S. Lin, K. Yan, D. Yao, Y. Yu, Investigation of electromagnetic response o terahertz metamaterial by using split-disk resonator. Opt. Laser. Technol. 111, 509–514 (2019)

    ADS  Google Scholar 

  32. M. Unlu, M.R. Hashemi, C.W. Berry, S. Li, S.H. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)

    Google Scholar 

  33. K. Jan, S. Dominik, K. Steffen, S. Corey, O. Egbert, R. Marco, Electrically Reconfigurable micromirror array for direct spatial light modulation of terahertz waves over a bandwidth wider than 1 THz. Sci. Rep. 9, 2597 (2019)

    Google Scholar 

  34. W.M. Zhu, A.Q. Liu, X.M. Zhang, D.P. Tsai, T. Bourouina, J.H. Teng, X.H. Zhang, H.C. Guo, H. Tanoto, T. Mei, G.Q. Lo, D.L. Kwong, Switchable magnetic metamaterials using micromachining processes. Adv. Mater. 23, 1792–1796 (2011)

    Google Scholar 

  35. E. Khodasevych, C.M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B.S.Y. Ung, H. Lin, W.S.T. Rowe, D. Abbott, A. Mitchell, Elastomeric silicone substrates for terahertz fishnet metamaterials. Appl. Phys. Lett. 100, 061101 (2012)

    ADS  Google Scholar 

  36. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, Coupling mechanisms for split ring resonators: Theory and experiment. Phys. Status Solidi B 244, 1170–1175 (2007)

    ADS  Google Scholar 

  37. B. Sun, Y.Y. Yu, Double toroidal spoof localized surface plasmon resonance excited by two types of coupling mechanisms. Opt. Lett. 44, 1444–1447 (2019)

    ADS  Google Scholar 

  38. P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, Y.S. Lin, Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic. Sci. Rep. 9, 9917 (2019)

    ADS  Google Scholar 

  39. Y.F.C. Chau, C.T.C. Chao, H.J. Huang, U. Anwar, C.M. Lim, N.Y. Voo, A.H. Manif, N.T.R.N. Kumara, H.P. Chiang, Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 15, 102567 (2019)

    Google Scholar 

  40. Y.F.C. Chau, C.T.C. Chao, C.M. Lim, H.J. Huang, H.P. Chiang, Deploying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 3, 7508–7516 (2018)

    Google Scholar 

  41. Y.F.C. Chau, C.T.C. Chao, J.Y. Rao, H.P. Chiang, C.M. Lim, R.C. Lim, N.Y. Voo, Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11, 411 (2016)

    ADS  Google Scholar 

  42. N.T.R.N. Kumara, Y.F.C. Chau, J.W. Huang, H.J. Huang, C.T. Lin, H.P. Chiang, Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J. Opt. 18, 115003 (2016)

    ADS  Google Scholar 

  43. P.Q. Yu, X.F. Chen, Z. Yi, Y.J. Tang, H. Yang, Z.G. Zhou, T. Duan, S.B. Cheng, J.G. Zhang, Y.G. Yi, A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 97, 109400 (2019)

    Google Scholar 

  44. C.P. Liang, Y.B. Zhang, Z. Yi, X.F. Chen, Z.G. Zhou, H. Yang, Y. Yi, Y.J. Tang, W.T. Yao, Y.G. Yi, A broadband and polarization-independent metamaterial perfect absorber with monolayer Cr and Ti elliptical disks array. Results Phys. 15, 102635 (2019)

    Google Scholar 

  45. Y.F.C. Chau, C.T.C. Chao, H.J. Huang, N.T.R.N. Kumara, C.M. Lim, H.P. Chiang, Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials 9, 1433 (2019)

    Google Scholar 

  46. Y.F. Chau, C.K. Wang, L. Shen, C.M. Lim, H.P. Chiang, C.T.C. Chao, H.J. Huang, C.T. Lin, N.T.R.N. Kumara, N.Y. Voo, Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7, 16817 (2017)

    ADS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from research grants of 100 Talents Program of Sun Yat-Sen University (Grant number 76120-18841202) and the State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-Sen University for the use of FDTD simulation code (LUMERICAL version: 8.12.631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Sheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zheng, D. & Lin, YS. Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic. Appl. Phys. A 126, 110 (2020). https://doi.org/10.1007/s00339-019-3274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3274-5

Keywords

Navigation