Skip to main content
Log in

Evaluation of the elastic and plastic properties of the antimonene at the presence of the external electric field: a DFT investigation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the influence of the external electric field on the mechanical properties of the antimonene is investigated. For this purpose, the density functional theory is utilized. Using the uniaxial and biaxial loading, the in-plane Young’s modulus, bulk modulus and Yield’s strain of the antimonene are computed. Also, the variation of an individual bond under the mentioned loading conditions is studied. It is shown that while the in-plane Young’s modulus and bulk modulus of the antimonene are not affected significantly at the presence of the external electric field, the Yield strain after which the nanosheet enters the plastic region significantly decreases noticeably. Besides, the largest tolerated strain by individual bonds is not influenced by the external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. X. Wu, X. Zhang, X. Wang, Z. Zeng, Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons. AIP Adv 6, 045318 (2016)

    ADS  Google Scholar 

  2. M. Fortin-Deschênes, O. Waller, T. Mentes, A. Locatelli, S. Mukherjee, F. Genuzio, P. Levesque, A. Hébert, R. Martel, O. Moutanabbir, Synthesis of antimonene on germanium. Nano Lett 17, 4970–4975 (2017)

    ADS  Google Scholar 

  3. P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D.A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater 28, 6332–6336 (2016)

    Google Scholar 

  4. C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, Few-layer antimonene by liquid-phase exfoliation. Angew Chem Int Ed 55, 14345–14349 (2016)

    Google Scholar 

  5. J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun 7, 13352 (2016)

    ADS  Google Scholar 

  6. Y. Shao, Z.-L. Liu, C. Cheng, X. Wu, H. Liu, C. Liu, J.-O. Wang, S.-Y. Zhu, Y.-Q. Wang, D.-X. Shi, Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene. Nano Lett 18, 2133–2139 (2018)

    ADS  Google Scholar 

  7. E. Martínez-Periñán, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, C.E. Banks, Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv Energy Mater 8, 1702606 (2018)

    Google Scholar 

  8. R. Chandiramouli, Antimonene nanosheet device for detection of explosive vapors—a first-principles inspection. Chem Phys Lett 708, 130–137 (2018)

    ADS  Google Scholar 

  9. J. Su, T. Duan, W. Li, B. Xiao, G. Zhou, Y. Pei, X. Wang, A first-principles study of 2D antimonene electrodes for Li ion storage. Appl Surf Sci 462, 270–275 (2018)

    ADS  Google Scholar 

  10. X. Sun, Z. Song, S. Liu, Y. Wang, Y. Li, W. Wang, J. Lu, Sub-5 nm monolayer arsenene and antimonene transistors. ACS Appl Mater Interfaces 10, 22363–22371 (2018)

    Google Scholar 

  11. Y. Wang, P. Huang, M. Ye, R. Quhe, Y. Pan, H. Zhang, H. Zhong, J. Shi, J. Lu, Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater 29, 2191–2201 (2017)

    Google Scholar 

  12. A. Rudenko, M. Katsnelson, R. Roldán, Electronic properties of single-layer antimony: tight-binding model, spin-orbit coupling, and the strength of effective Coulomb interactions. Phys Rev B 95, 081407 (2017)

    ADS  Google Scholar 

  13. Y. Shi, C. Wang, T. Wang, M. Wang, The electronic and transport properties of zigzag β-antimonene nanoribbons. Physica E 105, 41–46 (2019)

    ADS  Google Scholar 

  14. S. Wang, X. Zhang, Y. Liu, Y. Huang, C.Q. Sun, Antimonene nanoribbon band-gap expansion: bond contraction and edge quantum entrapment. Mater Chem Phys 211, 414–419 (2018)

    Google Scholar 

  15. Y. Wang, Y. Ding, Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study. Nanoscale Res Lett 10, 254 (2015)

    ADS  Google Scholar 

  16. F. Zhang, W. Li, X. Dai, Effects of interlayer coupling on the electronic structures of antimonene/graphene van der Waals heterostructures. Superlattices Microstruct 100, 826–832 (2016)

    ADS  Google Scholar 

  17. S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S.A. Yang, Z. Zhu, Z. Chen, H. Zeng, Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett 17, 3434–3440 (2017)

    ADS  Google Scholar 

  18. T. Li, C. He, W. Zhang, Structural complexity and wide application of two-dimensional S/O type antimonene. Appl Surf Sci 441, 77–84 (2018)

    ADS  Google Scholar 

  19. X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures. J Mater Chem C 4, 5434–5441 (2016)

    Google Scholar 

  20. N. Wang, D. Cao, J. Wang, P. Liang, X. Chen, H. Shu, Interface effect on electronic and optical properties of antimonene/GaAs van der Waals heterostructures. J Mater Chem C 5, 9687–9693 (2017)

    Google Scholar 

  21. K.-X. Chen, S.-S. Lyu, X.-M. Wang, Y.-X. Fu, Y. Heng, D.-C. Mo, Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study. J Phys Chem C 121, 13035–13042 (2017)

    Google Scholar 

  22. B. Zhang, H. Zhang, J. Lin, X. Cheng, First-principle study of seven allotropes of arsenene and antimonene: thermodynamic, electronic and optical properties. Phys Chem Chem Phys 20, 30257–30266 (2018)

    Google Scholar 

  23. S.K. Gupta, Y. Sonvane, G. Wang, R. Pandey, Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes. Chem Phys Lett 641, 169–172 (2015)

    ADS  Google Scholar 

  24. S. Wang, W. Wang, G. Zhao, Thermal transport properties of antimonene: an ab initio study. Phys Chem Chem Phys 18, 31217–31222 (2016)

    Google Scholar 

  25. D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Strain engineering of antimonene by a first-principles study: mechanical and electronic properties. Phys Rev B 98, 085410 (2018)

    ADS  Google Scholar 

  26. Y. Hu, Y. Wu, S. Zhang, Influences of Stone-Wales defects on the structure, stability and electronic properties of antimonene: a first principle study. Phys B 503, 126–129 (2016)

    ADS  Google Scholar 

  27. L. Yang, Y. Song, W. Mi, X. Wang, The electronic structure and spin–orbit-induced spin splitting in antimonene with vacancy defects. RSC Adv 6, 66140–66146 (2016)

    Google Scholar 

  28. X. Sun, Y. Liu, Z. Song, Y. Li, W. Wang, H. Lin, L. Wang, Y. Li, Structures, mobility and electronic properties of point defects in arsenene, antimonene and an antimony arsenide alloy. J Mater Chem C 5, 4159–4166 (2017)

    Google Scholar 

  29. S. Dai, Y.-L. Lu, P. Wu, Tuning electronic, magnetic and optical properties of Cr-doped antimonene via biaxial strain engineering. Appl Surf Sci 463, 492–497 (2019)

    ADS  Google Scholar 

  30. S. Dai, W. Zhou, Y. Liu, Y.-L. Lu, L. Sun, P. Wu, Tunable electronic and magnetic properties of antimonene system via Fe doping and defect complex: a first-principles perspective. Appl Surf Sci 448, 281–287 (2018)

    ADS  Google Scholar 

  31. C. He, M. Cheng, W. Zhang, Tunable electronic and magnetic properties of transition metals doped antimonene: a first-principles study. Mater Res Express 5, 065059 (2018)

    ADS  Google Scholar 

  32. Y. Hu, T. Shu, C. Mao, L. Xue, Z. Yan, Y. Wu, Arsenene and antimonene doped by group-VA atoms: first-principles studies of the geometric structures, electronic properties and STM images. Phys B 553, 195–201 (2019)

    ADS  Google Scholar 

  33. Y. Zhou, X. Lin, Effects of interstitial dopings of 3D transition metal atoms on antimonene: a first-principles study. Appl Surf Sci 458, 572–579 (2018)

    ADS  Google Scholar 

  34. H. Lu, J. Gao, Z. Hu, X. Shao, Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures. RSC Adv 6, 102724–102732 (2016)

    Google Scholar 

  35. M. Zhao, X. Zhang, L. Li, Strain-driven band inversion and topological aspects in antimonene. Sci Rep 5, 16108 (2015)

    ADS  Google Scholar 

  36. Y. Zhou, G. Cheng, J. Li, Coexistence of Co doping and strain on arsenene and antimonene: tunable magnetism and half-metallic behavior. RSC Adv 8, 1320–1327 (2018)

    Google Scholar 

  37. H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T. Phuong, N.V. Hieu, C.V. Nguyen, Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure. Superlattices Microstruct 112, 554–560 (2017)

    ADS  Google Scholar 

  38. C. Dekker, Carbon nanotubes as molecular quantum wires. Phys Today 52, 22–30 (1999)

    ADS  Google Scholar 

  39. H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001)

    ADS  Google Scholar 

  40. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)

    ADS  Google Scholar 

  41. Y. Guo, W. Guo, Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field. J Phys D Appl Phys 36, 805 (2003)

    ADS  Google Scholar 

  42. P.G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86, 3128 (2001)

    ADS  Google Scholar 

  43. G. Zhou, W. Duan, B. Gu, Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Phys Rev Lett 87, 095504 (2001)

    ADS  Google Scholar 

  44. A. Hansson, M. Paulsson, S. Stafström, Effect of bending and vacancies on the conductance of carbon nanotubes. Phys Rev B 62, 7639 (2000)

    ADS  Google Scholar 

  45. M.B. Nardelli, J. Bernholc, Mechanical deformations and coherent transport in carbon nanotubes. Phys Rev B 60, R16338 (1999)

    ADS  Google Scholar 

  46. D. Tekleab, D. Carroll, G. Samsonidze, B. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube. Phys Rev B 64, 035419 (2001)

    ADS  Google Scholar 

  47. R. Ansari, A. Shahnazari, S. Rouhi, A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Physica E 88, 272–278 (2017)

    ADS  Google Scholar 

  48. L. Colombo, S. Giordano, Nonlinear elasticity in nanostructured materials. Rep Prog Phys 74, 116501 (2011)

    ADS  MathSciNet  Google Scholar 

  49. E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102, 235502 (2009)

    ADS  Google Scholar 

  50. O. Akbari, R. Ansari, S. Rouhi, Mechanical properties of pristine and Fe. V and Ti doped arsenene: density functional theory calculation, Mater Res Express 5, 015025 (2018)

    Google Scholar 

  51. B. Jeong, J. Kim, T. Lee, S.-W. Kim, S. Ryu, Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal. Sci Rep 8, 15200 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or S. Rouhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Ansari, R. & Rouhi, S. Evaluation of the elastic and plastic properties of the antimonene at the presence of the external electric field: a DFT investigation. Appl. Phys. A 126, 125 (2020). https://doi.org/10.1007/s00339-019-3273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3273-6

Keywords

Navigation