Skip to main content

Advertisement

Log in

Structural analysis, optical and mechanical properties of TixZr1−xO2 nanoparticles synthesized by modified co-precipitation route

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The multiphase TixZr1−xO2 (0 ≤ x ≤ 1) nanoparticles were prepared by co-precipitation method. The samples were stable at temperatures > 300 °C, so the samples were calcined at 600 °C to be more stable. The ZrO2 crystallite size nanoparticles is 13.19 nm with monoclinic mixed tetragonal structure, 36.97 nm for TiO2 nanoparticles with anatase and rutile mixed phase and 6–10 nm for TixZr1−xO2; (x = 0.2, 0.4, 0.5, 0.6 and 0.8) with orthorhombic phase except the sample Ti0.8Zr0.2O2 nanoparticles that had anatase phase of TiO2 mixed with tetragonal phase of ZrO2. TEM results show the morphology of the samples with spherical shape and the particle size was in the range 8–26 nm. The presence of titanium decreases the optical band gap of ZrO2 and converts it from ceramic materials to semiconductor materials. The addition of Ti enhanced the mechanical properties of TixZr1-xO2 (0 ≤ x ≤ 1) composites. The hardness increased from 0.51 GPa (ZrO2) to 0.55 GPa (Ti0.5Zr0.5O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.-M.O. Ceballos-Sanchez, C. Koop-Santa, E.R. -Mena, E. Guareño, M. García-Guaderrama, N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram. Int. 44(5), 5273–5283 (2018)

    Article  Google Scholar 

  2. L.I. Nadaf, K.S. Venkatesh, Synthesis and characterization of tin oxide nanoparticles by co-precipitation method. IOSR J. Appl. Chem. (IOSR-JAC) 9(2), 1–4 (2016)

    Google Scholar 

  3. G.D. Webler et al., Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method. Appl. Surf. Sci. 436(3), 141–151 (2018)

    Article  ADS  Google Scholar 

  4. J. Huang, Y. Kang, L. Wang, T. Yang, Y. Wang, S. Wang, Mesoporous CuO/TixZr1 xO2 catalysts for low-temperature CO oxidation. Catal. Commun. 15(1), 41–45 (2011)

    Article  Google Scholar 

  5. M. Mazaheri, M. Valefi, Z.R. Hesabi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceram. Int. 35(1), 13–20 (2009)

    Article  Google Scholar 

  6. A. Tarancón, Strategies for lowering solid oxide fuel cells operating temperature. Energies 2(4), 1130–1150 (2009)

    Article  Google Scholar 

  7. J.C. Garcia et al., Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 100(10), 1–25 (2006)

    Article  Google Scholar 

  8. S. Armentia, M. Pantoja, J. Abenojar, M. Martinez, Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties. Coatings 8(10), 368 (2018)

    Article  Google Scholar 

  9. Precious-Ayanwale, A. Donohue-Corenjo, J. C. Cuevas-Gonzalex, L. F. Espinosa-Cristobal, and S. Y. Reyes-Lopez, Review of The Synthesis, Characterization and Application of Zirconia Mixed Metal Oxide Nanoparticles, Int. J. Res., 6, 8, 136–145 (2018).

  10. M. Ahmad, A. Bashir, S.Riaz Sadaqat, S. Naseem, Effects of Temperature on Zirconia During and after Synthesis. Mater. Today Proc. 2(10), 5786–5792 (2015)

    Article  Google Scholar 

  11. W. Fu et al., Interactions, joining and microstructure of Sn-Ti/ZrO 2 system. J. Eur. Ceram. Soc. 39(4), 1525–1531 (2019)

    Article  Google Scholar 

  12. O Mangla, S Roy (2018) Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions. Proceedings 3(1):10.

    Article  Google Scholar 

  13. T. Ahmad, hydrothermal synthesis, characterization and dielectric properties of zirconia nanoparticles. Mater. Sci. Eng. Int. J. 1(3), 4–8 (2017)

    Google Scholar 

  14. F.T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1(1), 1–21 (2000)

    Article  Google Scholar 

  15. P.B. Rathod, K.R. Nemade, S.A. Waghule, Study of structure and optical for chemically synthesized titanium dioxide nanoparticles. Int. J. Chem. Phys. Sci. 4, 491–495 (2015)

    Google Scholar 

  16. Neppolian, Q. Wang, H. Yamashita, H. Choi, “Synthesis and characterization of ZrO2—TiO2 binary oxide semiconductor nanoparticles : application and interparticle electron transfer process 333 264–271 (2007).

  17. C. Yu, J. Lin, R.W.M. Kwok, Ti 1–x Zr x O 2 Solid solutions for the photocatalytic degradation of acetone in air. J. Phys. Chem. B 102(26), 5094–5098 (1998)

    Article  Google Scholar 

  18. M.D. Hernández-Alonso, J.M. Coronado, B. Bachiller-Baeza, M. Fernández-García, J. Soria, Influence of structural and surface characteristics of Ti 1-xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase. Chem. Mater. 19(17), 4283–4291 (2007)

    Article  Google Scholar 

  19. H. Tsukamoto, Mechanical properties of zirconia-titanium composites. Int. J. Mater. Sci. Appl. 3(5), 260–267 (2014)

    Google Scholar 

  20. L. Lin, D. Gan, and P. Shen, Stabilization of Zirconia Sintered with Titanium, 29, 1988, 624–629 (2000).

  21. H. Kuo, J. Chou, T. Liu, Microstructure and mechanical properties of microwave sintered ZrO2 bioceramics with TiO2 addition. Appl. Bionics Biomech. 2016, 6–9 (2016)

    Article  Google Scholar 

  22. W. Buraso, V. Lachom, P. Siriya, P. Laokul, Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express 5(11), 115003 (2018)

    Article  ADS  Google Scholar 

  23. K.G.S. Pozan, I. Boz, Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Appl. Catal. B Environ. 115–116, 149–158 (2012)

    Google Scholar 

  24. B. Liu et al., Photocatalytic degradation of gaseous toluene with multiphase TixZr1 xO2 synthesized via co-precipitation route. J. Colloid Interface Sci. 438, 1–6 (2015)

    Article  ADS  Google Scholar 

  25. T.W. Liskiewicz, B.D. Beake, N. Schwarzer, M.I. Davies, Surface & coatings technology short note on improved integration of mechanical testing in predictive wear models. Surf. Coat. Technol. 237, 212–218 (2013)

    Article  Google Scholar 

  26. S. Bagheri, K.G. Chandrappa, S.B.A. Hamid, Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chem. 5(3), 265–270 (2013)

    Google Scholar 

  27. N.A. Salahuddin, M. Kemary, E.M. Ibrahim, Synthesis and characterization of ZnO nanoparticles via precipitation method: effect of annealing temperature on particle size. Nanosci. Nanotechnol. 5(4), 82–88 (2015)

    Google Scholar 

  28. S. Elshazly, O.A.A. Abdelal, Nickel stabilized zirconia for SOFCs: synthesis and characterization. Int. J. Metall. Eng. 1(6), 130–134 (2013)

    Google Scholar 

  29. Prakashbabu et al., “Low temperature synthesis of pure cubic ZrO 2 nanopowder: Structural and luminescence studies,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 122, pp. 216–222, 2014.

    Article  ADS  Google Scholar 

  30. H.C. Madhusudhana et al., Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method. J. Asian Ceram. Soc. 4(3), 309–318 (2016)

    Article  Google Scholar 

  31. K. Sidhu, A.K. Kaushik, S. Rana, S. Bhansali, R. Kumar, Applied surface science photoluminescence quenching of zirconia nanoparticle by surface modification. Appl. Surf. Sci. 334, 216–221 (2015)

    Article  ADS  Google Scholar 

  32. S. M. Roopan, V. G. Kha, and A. Rahuman, “3 . Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, G. Rajakumar, A. Abdul spectrochimica acta part a : molecular and biomolecular spectroscopy fungus-mediated biosynthesis and ch. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, April 2018, 23–29 (2012)

  33. C. Aydn, M.S. Sadek, K. Zheng, I.S. Yahia, F, Yakuphanoglu Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique. Opt. Laser Technol. 48, 447–452 (2013)

    Article  ADS  Google Scholar 

  34. P. Gupta, M. Ramrakhiani, Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci. J. 3(1), 15–19 (2009)

    Article  ADS  Google Scholar 

  35. M. Shehap, D.S. Akil, Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 9(1), 17–36 (2016)

    Google Scholar 

  36. X. Miao, D. Sun, P. W. Hoo, J. Liu, Y. Hu, Y. Chen (2004) Effect of titania addition on yttria-stabilised tetragonal zirconia ceramics sintered at high temperatures, 30, 1041–1047.

  37. X. Liu, F. Yuan, Y. Wei, Applied surface science grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Appl. Surf. Sci. 279, 159–166 (2013)

    Article  ADS  Google Scholar 

  38. Nazaruddin, Effect of addition of nanoparticles on the mechanical properties of aluminium, 4, 08, 268–272 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Abd El-sadek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nagar, H., Abd El-sadek, M.S. & Ezzeldien, M. Structural analysis, optical and mechanical properties of TixZr1−xO2 nanoparticles synthesized by modified co-precipitation route. Appl. Phys. A 126, 126 (2020). https://doi.org/10.1007/s00339-019-3272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3272-7

Keywords

Navigation