Abstract
The multiphase TixZr1−xO2 (0 ≤ x ≤ 1) nanoparticles were prepared by co-precipitation method. The samples were stable at temperatures > 300 °C, so the samples were calcined at 600 °C to be more stable. The ZrO2 crystallite size nanoparticles is 13.19 nm with monoclinic mixed tetragonal structure, 36.97 nm for TiO2 nanoparticles with anatase and rutile mixed phase and 6–10 nm for TixZr1−xO2; (x = 0.2, 0.4, 0.5, 0.6 and 0.8) with orthorhombic phase except the sample Ti0.8Zr0.2O2 nanoparticles that had anatase phase of TiO2 mixed with tetragonal phase of ZrO2. TEM results show the morphology of the samples with spherical shape and the particle size was in the range 8–26 nm. The presence of titanium decreases the optical band gap of ZrO2 and converts it from ceramic materials to semiconductor materials. The addition of Ti enhanced the mechanical properties of TixZr1-xO2 (0 ≤ x ≤ 1) composites. The hardness increased from 0.51 GPa (ZrO2) to 0.55 GPa (Ti0.5Zr0.5O2).
Similar content being viewed by others
References
S.-M.O. Ceballos-Sanchez, C. Koop-Santa, E.R. -Mena, E. Guareño, M. García-Guaderrama, N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram. Int. 44(5), 5273–5283 (2018)
L.I. Nadaf, K.S. Venkatesh, Synthesis and characterization of tin oxide nanoparticles by co-precipitation method. IOSR J. Appl. Chem. (IOSR-JAC) 9(2), 1–4 (2016)
G.D. Webler et al., Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method. Appl. Surf. Sci. 436(3), 141–151 (2018)
J. Huang, Y. Kang, L. Wang, T. Yang, Y. Wang, S. Wang, Mesoporous CuO/TixZr1 − xO2 catalysts for low-temperature CO oxidation. Catal. Commun. 15(1), 41–45 (2011)
M. Mazaheri, M. Valefi, Z.R. Hesabi, S.K. Sadrnezhaad, Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceram. Int. 35(1), 13–20 (2009)
A. Tarancón, Strategies for lowering solid oxide fuel cells operating temperature. Energies 2(4), 1130–1150 (2009)
J.C. Garcia et al., Structural, electronic, and optical properties of ZrO2 from ab initio calculations. J. Appl. Phys. 100(10), 1–25 (2006)
S. Armentia, M. Pantoja, J. Abenojar, M. Martinez, Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties. Coatings 8(10), 368 (2018)
Precious-Ayanwale, A. Donohue-Corenjo, J. C. Cuevas-Gonzalex, L. F. Espinosa-Cristobal, and S. Y. Reyes-Lopez, Review of The Synthesis, Characterization and Application of Zirconia Mixed Metal Oxide Nanoparticles, Int. J. Res., 6, 8, 136–145 (2018).
M. Ahmad, A. Bashir, S.Riaz Sadaqat, S. Naseem, Effects of Temperature on Zirconia During and after Synthesis. Mater. Today Proc. 2(10), 5786–5792 (2015)
W. Fu et al., Interactions, joining and microstructure of Sn-Ti/ZrO 2 system. J. Eur. Ceram. Soc. 39(4), 1525–1531 (2019)
O Mangla, S Roy (2018) Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions. Proceedings 3(1):10.
T. Ahmad, hydrothermal synthesis, characterization and dielectric properties of zirconia nanoparticles. Mater. Sci. Eng. Int. J. 1(3), 4–8 (2017)
F.T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1(1), 1–21 (2000)
P.B. Rathod, K.R. Nemade, S.A. Waghule, Study of structure and optical for chemically synthesized titanium dioxide nanoparticles. Int. J. Chem. Phys. Sci. 4, 491–495 (2015)
Neppolian, Q. Wang, H. Yamashita, H. Choi, “Synthesis and characterization of ZrO2—TiO2 binary oxide semiconductor nanoparticles : application and interparticle electron transfer process 333 264–271 (2007).
C. Yu, J. Lin, R.W.M. Kwok, Ti 1–x Zr x O 2 Solid solutions for the photocatalytic degradation of acetone in air. J. Phys. Chem. B 102(26), 5094–5098 (1998)
M.D. Hernández-Alonso, J.M. Coronado, B. Bachiller-Baeza, M. Fernández-García, J. Soria, Influence of structural and surface characteristics of Ti 1-xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase. Chem. Mater. 19(17), 4283–4291 (2007)
H. Tsukamoto, Mechanical properties of zirconia-titanium composites. Int. J. Mater. Sci. Appl. 3(5), 260–267 (2014)
L. Lin, D. Gan, and P. Shen, Stabilization of Zirconia Sintered with Titanium, 29, 1988, 624–629 (2000).
H. Kuo, J. Chou, T. Liu, Microstructure and mechanical properties of microwave sintered ZrO2 bioceramics with TiO2 addition. Appl. Bionics Biomech. 2016, 6–9 (2016)
W. Buraso, V. Lachom, P. Siriya, P. Laokul, Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express 5(11), 115003 (2018)
K.G.S. Pozan, I. Boz, Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles. Appl. Catal. B Environ. 115–116, 149–158 (2012)
B. Liu et al., Photocatalytic degradation of gaseous toluene with multiphase TixZr1 − xO2 synthesized via co-precipitation route. J. Colloid Interface Sci. 438, 1–6 (2015)
T.W. Liskiewicz, B.D. Beake, N. Schwarzer, M.I. Davies, Surface & coatings technology short note on improved integration of mechanical testing in predictive wear models. Surf. Coat. Technol. 237, 212–218 (2013)
S. Bagheri, K.G. Chandrappa, S.B.A. Hamid, Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chem. 5(3), 265–270 (2013)
N.A. Salahuddin, M. Kemary, E.M. Ibrahim, Synthesis and characterization of ZnO nanoparticles via precipitation method: effect of annealing temperature on particle size. Nanosci. Nanotechnol. 5(4), 82–88 (2015)
S. Elshazly, O.A.A. Abdelal, Nickel stabilized zirconia for SOFCs: synthesis and characterization. Int. J. Metall. Eng. 1(6), 130–134 (2013)
Prakashbabu et al., “Low temperature synthesis of pure cubic ZrO 2 nanopowder: Structural and luminescence studies,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 122, pp. 216–222, 2014.
H.C. Madhusudhana et al., Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method. J. Asian Ceram. Soc. 4(3), 309–318 (2016)
K. Sidhu, A.K. Kaushik, S. Rana, S. Bhansali, R. Kumar, Applied surface science photoluminescence quenching of zirconia nanoparticle by surface modification. Appl. Surf. Sci. 334, 216–221 (2015)
S. M. Roopan, V. G. Kha, and A. Rahuman, “3 . Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, G. Rajakumar, A. Abdul spectrochimica acta part a : molecular and biomolecular spectroscopy fungus-mediated biosynthesis and ch. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, April 2018, 23–29 (2012)
C. Aydn, M.S. Sadek, K. Zheng, I.S. Yahia, F, Yakuphanoglu Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique. Opt. Laser Technol. 48, 447–452 (2013)
P. Gupta, M. Ramrakhiani, Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci. J. 3(1), 15–19 (2009)
M. Shehap, D.S. Akil, Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int. J. Nanoelectron. Mater. 9(1), 17–36 (2016)
X. Miao, D. Sun, P. W. Hoo, J. Liu, Y. Hu, Y. Chen (2004) Effect of titania addition on yttria-stabilised tetragonal zirconia ceramics sintered at high temperatures, 30, 1041–1047.
X. Liu, F. Yuan, Y. Wei, Applied surface science grain size effect on the hardness of nanocrystal measured by the nanosize indenter. Appl. Surf. Sci. 279, 159–166 (2013)
Nazaruddin, Effect of addition of nanoparticles on the mechanical properties of aluminium, 4, 08, 268–272 (2015).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
El-Nagar, H., Abd El-sadek, M.S. & Ezzeldien, M. Structural analysis, optical and mechanical properties of TixZr1−xO2 nanoparticles synthesized by modified co-precipitation route. Appl. Phys. A 126, 126 (2020). https://doi.org/10.1007/s00339-019-3272-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-019-3272-7