Skip to main content
Log in

Toroidal dipole-induced coherent forward scattering from a miniaturized cloaking structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The physical existence of microwave toroidal dipole in a dogbone metallic inclusion-based miniaturized cloaking structure is verified in this paper. The excitation of toroidal dipole moments on the studied composite is verified using multipole scattering formalism. The presence of the toroidal Fano resonance significantly enhances resonant forward scattering from the structure for normal incidence. Multipolar contribution from the electric, magnetic and toroidal moments significantly enhances the scattering cross-section of the composite as compared to a bare cylindrical metallic object. Applicability of the proposed scheme is tested inside an anechoic chamber using reflection measurements on the fabricated structure and is subsequently validated in computer simulations in the microwave frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)

    Google Scholar 

  2. M. Kerker, D.S. Wang, L. Giles, Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983)

    Article  ADS  Google Scholar 

  3. T.A. Milligan, Modern Antenna Design (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  4. P. Alitalo, A.O. Karilainen, T. Niemi, C.R. Simovski, S.A. Tretyakov, Design and realisation of an electrically small Huygens source for circular polarization. IET Microw. Antennas Propag. 5, 783–789 (2011)

    Article  Google Scholar 

  5. R.W. Ziolkowski, Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access 3, 2644–2651 (2015)

    Article  Google Scholar 

  6. R.W. Ziolkowski, Using Huygens multipole arrays to realize unidirectional needle-like radiation. Phys. Rev. X 7, 031017 (2017)

    Google Scholar 

  7. A.E. Miroshnichenko, B. Luk’yanchuk, S.A. Maier, Y.S. Kivshar, Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6, 837–842 (2012)

    Article  Google Scholar 

  8. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  9. B.O. Zhu, J. Zhao, Y. Feng, Active impedance metasurface with full 3600 reflection phase tuning. Nat. Sci. Rep. 49, 1–6 (2013)

    Google Scholar 

  10. B.O. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, Y. Feng, Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Nat. Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  11. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, Hoboken, 1999)

    MATH  Google Scholar 

  12. I.B. Zel'dovich, The relation between decay asymmetry and dipole moment of elementary particles. Phys. JETP 6, 1184 (1958)

    ADS  Google Scholar 

  13. G.N. Afanasiev, Y.P. Stepanovsky, The electromagnetic field of elementary time-dependent toroidal sources. J. Phys. A Math. Gen. 28, 4565 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. L.-Y. Guo, M.-H. Li, X.-J. Huang, H.-L. Yang, Electric toroidal metamaterial for resonant transparency and circular cross-polarization conversion. Appl. Phys. Lett. 105, 033507 (2014)

    Article  ADS  Google Scholar 

  15. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, N.I. Zheludev, Toroidal dipolar response in a metamaterial. Science 330, 1510–1512 (2010)

    Article  ADS  Google Scholar 

  16. Manoj Gupta, Vassili Savinov, Ningning Xu, Longqing Cong, Govind Dayal, Shuang Wang,Weili Zhang, Nikolay I. Zheludev, Ranjan Singh, Sharp Toroidal Resonances in Planar Terahertz Metasurfaces., Adv. Mater. 201601611, 1–6 (2016).

  17. M. Gupta, R. Singh, Toroidal versus fano resonances in high Q planar THz metamaterials. Adv. Opt. Mat. 201600553, 1–7 (2016)

    Google Scholar 

  18. A.C. Tasolamprou, O. Tsilipakos, M. Kafesaki, C.M. Soukoulis, E.N. Economou, Toroidal eigenmodes in all-dielectric metamolecules. Phys. Rev. B 94, 205433 (2016)

    Article  ADS  Google Scholar 

  19. A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk'yanchuk, B.N. Chichkov, Y.S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Article  ADS  Google Scholar 

  20. N.A. Nemkov, I.V. Stenishchev, A.A. Basharin, Nontrivial nonradiating all-dielectric anapole. Nat. Sci. Rep. 7, 1064 (2017)

    Article  ADS  Google Scholar 

  21. A.A. Basharin, V. Chuguevsky, N. Volsky, M. Kafesaki, E.N. Economou, Extremely high Q-factor metamaterials due to anapole excitation. Phys. Rev. B 95, 035104 (2017)

    Article  ADS  Google Scholar 

  22. P.C. Wu, C.Y. Liao, V. Savinov, T.L. Chung, W.T. Chen, Y.-W. Huang, P.R. Wu, Y.-H. Chen, A.-Q. Liu, N.I. Zheludev, D.P. Tsai, Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018)

    Article  Google Scholar 

  23. I.V. Stenishchev, A.A. Basharin, Toroidal response in all-dielectric metamaterials based on water. Nat. Sci. Rep. 7, 9468 (2017)

    Article  ADS  Google Scholar 

  24. V.P. Sarin, M.P. Jayakrishnan, P.V. Vinesh, C.K. Aanandan, P. Mohanan, K. Vasudevan, An experimental realization of cylindrical cloaking using dogbone metamaterials. Can. J. Phys. 95, 927–932 (2017)

    Article  ADS  Google Scholar 

  25. G. Donzelli, A. Vallecchi, F. Capolino, A. Schuchinsky, Meta-material made of paired planar conductors: particle resonances, phenomena and properties. Metamaterials 3, 10–27 (2009)

    Article  ADS  Google Scholar 

  26. S.V. Pushpakaran, J.M. Purushothama, M. Mani, A. Chandroth, M. Pezholil, V. Kesavath, A metamaterial absorber based high gain directional dipole antenna. Int. J. Microw. Wirel. Technol. 10, 430–436 (2018)

    Article  Google Scholar 

  27. M.V. Rybin, P.V. Kapitanova, D.S. Filonov, A.P. Slobozhanyuk, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013)

    Article  ADS  Google Scholar 

  28. S.V. Pushpakaran, N.M. SeidMuhammed, R.K. Raj, A. Pradeep, P. Mohanan, K. Vasudevan, A Compact stacked dipole antenna with directional radiation coverage for wireless applications. IEEE Antenna Wirel. Propag. Lett. 12, 841–844 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research funding received from the Science and Engineering Research Board (SERB), Department of Science and Technology for the major research project ECR/2017/002204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sarin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarin, V.P., Vinesh, P.V., Manoj, M. et al. Toroidal dipole-induced coherent forward scattering from a miniaturized cloaking structure. Appl. Phys. A 126, 90 (2020). https://doi.org/10.1007/s00339-019-3270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3270-9

Keywords

Navigation