Skip to main content
Log in

Influence of ZrO2 on gamma shielding properties of lead borate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, new lead borate glass system in the chemical form of 40B2O3–40PbO–20Li2O3–xZrO2; where x = 0, 0.25, 0.50, 1, and 1.5 mol% has been synthesized. Gamma-ray shielding properties of these glasses have been tested in terms of mass attenuation coefficient (μ/ρ), half value layer (HVL), effective atomic number (Zeff), mean free path (MFP), and exposure build-up factor (EBF). The μ/ρ values of the prepared glasses were generated by FLUKA Monte Carlo simulations over an extended energy range of 0.015–15 MeV, and then, the generated data were verified using the calculated values of XCOM software. The results showed that gamma-ray shielding ability of BPLZ0.00 is superior among the other prepared glasses. Moreover, the gamma-ray shielding properties of the current glass system have been compared with that of some commercial glasses and newly developed HMO glasses. It can be concluded that the prepared glass system could be useful to design and/or develop novel shields for radiation protection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Afifi, R. El-Mallawany, N. El-Khoshkhany, Ultrasonic studies of (TeO2) 50–(V2O5)50–x(TiO2)x glasses. Mater. Chem. Phys. 95, 321 (2006)

    Google Scholar 

  2. H. Afifi, M. Sedky, R. El-Malawany, Relaxation phenomena in tellurite glasses. J. Appl. Phys. 107, 053523 (2010)

    ADS  Google Scholar 

  3. Y.B. Saddeek, R. El-Mallawany, H.A. Afifi, Mechanical relaxation of some tellurovanadate glasses. J. Non Cryst. Solid 417, 28 (2015)

    ADS  Google Scholar 

  4. R. El-Mallawany, H. Afifi, Elastic moduli and crosslinking of some tellurite glass systems. J. Matter. Chem. Phys. 143(1), 11 (2013)

    Google Scholar 

  5. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348 (2009)

    ADS  Google Scholar 

  6. J.E. Shelby, Introduction to Glass Science and Technology (Royal Society of Chemistry, Cambridge, 2005)

    Google Scholar 

  7. S.K. Arya, S. Singh, K. Singh, Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J. Mater. Chem. C 4, 3328–3336 (2016)

    Google Scholar 

  8. J. Hum, A.R. Boccaccini, Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. Med. 23, 2317–2333 (2012)

    Google Scholar 

  9. S. Tanabe, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim. 5, 815–824 (2002)

    Google Scholar 

  10. M.K. Mahapatra, K. Lu, Seal glass for solid oxide fuel cells. J. Power Sources 195, 7129–7139 (2010)

    ADS  Google Scholar 

  11. P. Subbalakshmi, N. Veeraiah, Study of CaO–WO3–P2O5 glass system by dielectric properties, IR spectra and differential thermal analysis. J. Non-Cryst. Solids 298, 89–98 (2002)

    ADS  Google Scholar 

  12. P.S. Gahlot, V.P. Seth, A. Agarwal, N. Kisore, S.K. Gupta, M. Arora, D.R. Goyal, Influence of ZnO on optical properties and dc conductivity of vanadyl-doped alkali bismuthate glasses. Radiat. Eff. Defects Solids 159, 223–231 (2004)

    ADS  Google Scholar 

  13. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019)

    ADS  Google Scholar 

  14. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses. Ceram. Int. 45, 20724–20732 (2019)

    Google Scholar 

  15. N. Elkhoshkhany, R.K. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)

    Google Scholar 

  16. I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ion. Phys B 406, 972–980 (2011)

    ADS  Google Scholar 

  17. I.Z. Hager, R. El-Mallawany, Preparation and structural studied in the (70–x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45, 897–905 (2010)

    ADS  Google Scholar 

  18. H.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 85, 2655–2659 (2002)

    Google Scholar 

  19. S.E. Ibrahim, Y.S. Rammah, I.Z. Hager, R. El-Mallawany, UV and electrical properties of TeO2–WO3–Li2O-Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses. J. Non-Cryst. Solids 498, 443–447 (2018)

    ADS  Google Scholar 

  20. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100–x)TeO2–(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)

    Google Scholar 

  21. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)

    ADS  Google Scholar 

  22. M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017)

    ADS  Google Scholar 

  23. A. Novatski, A. Steimacher, A.N. Medina, A.C. Bento, M.L. Baesso, L.H.C. Andrade, S.M. Lima, Y. Guyot, G. Boulon, Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO–MgO aluminosilicate glasses. J. Appl. Phys. 104, 094910–094917 (2008)

    ADS  Google Scholar 

  24. B.S. Khan, G. Kaur, K. Singh, Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceram. Int. 43, 722–727 (2017)

    Google Scholar 

  25. X. Lu, L. Deng, J. Du, Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations. J. Non-Cryst. Solids 491, 41–150 (2018)

    Google Scholar 

  26. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017)

    Google Scholar 

  27. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 161, 55–59 (2019)

    Google Scholar 

  28. E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. 160, 112–123 (2019)

    ADS  Google Scholar 

  29. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)

    ADS  Google Scholar 

  30. A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3–TeO2–Na2O–CaO glasses. J. Non-Cryst. Solids 514, 52–59 (2019)

    ADS  Google Scholar 

  31. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nuclear Eng. Des 307, 364–376 (2016)

    Google Scholar 

  32. Ersundu, M. Çelikbilek, A. E. Ersundu, N. Gedikoğlu, E. Şakar, M. Büyükyıldız, and M. Kurudirek. Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J. Non-Cryst. Solids 524 (2019): 119648.

    ADS  Google Scholar 

  33. P. Kaur, K.J. Singh, M. Kurudirek, S. Thakur, Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties. Spectrochim. Acta A 223, 117309 (2019)

    Google Scholar 

  34. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.281

    Article  Google Scholar 

  35. M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride-based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33–39 (2017)

    ADS  Google Scholar 

  36. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 3, 3190–3202 (2019)

    Google Scholar 

  37. M. Kurudirek, Heavy metal borate glasses: Potential use for radiation shielding. J. Alloy. Compd. 727, 1227–1236 (2017)

    Google Scholar 

  38. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, E. Kavaz, Y.S. Rammah, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O glass systems. Ceram. Int. 46, 1711–1721 (2020)

    Google Scholar 

  39. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl Phys A 124, 650 (2018)

    ADS  Google Scholar 

  40. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: Structure, optical, and radiation shielding properties. Phys B 576, 411717 (2019)

    Google Scholar 

  41. Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non-Cryst. Solids 509, 99–105 (2019)

    ADS  Google Scholar 

  42. Y.S. Rammah, A. Askin, A.S. Abouhaswa, F.I. El-Agawany, M.I. Sayyed, Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl. Phys. A 125, 523 (2019)

    ADS  Google Scholar 

  43. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 125(10), 678 (2019)

    ADS  Google Scholar 

  44. American National Standard, Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials, ANSI/ANS-6.4.3, (1991)

  45. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125(7), 482 (2019)

    ADS  Google Scholar 

  46. A. Ferrari et al. FLUKA: a multi-particle transport code (Program version 2005), Cern-2005-010. (2005). doi: 10.5170/cern-2005-010.

  47. H.I. Mouhti, A. Elanique, M.Y. Messous, Monte Carlo modelling of a NaI(Tl) scintillator detectors using MCNP simulation code. J. Mater. Environ. Sci. 8, 4560–4565 (2017)

    Google Scholar 

  48. M.S. Al-Buriahi, K.S. Mann, Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater. Res. Express 6(10), 105206 (2019)

    ADS  Google Scholar 

  49. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography. Radiat. Phys. Chem. 166, 108507 (2019)

    Google Scholar 

  50. L. Gerward, N. Guilbert, K.B. Jensen, H. Lerving, WinXCom: a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 74, 653–654 (2004)

    ADS  Google Scholar 

  51. F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)

    Google Scholar 

  52. F. Akman, M.R. Kaçal, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005–1011 (2017)

    ADS  Google Scholar 

  53. D.C. Creagh, J.H. Hubbell, Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Report of the international union of crystallography x-ray attenuation project. Acta Crystallogr. A 43(1), 102–112 (1987)

    Google Scholar 

  54. G.J. Hine, The effective atomic numbers of materials for various gamma ray processes. Phys. Rev. 85, 725 (1952)

    Google Scholar 

  55. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instrum. Methods Phys. Res. Sect. B 266(18), 3906–3912 (2008)

    ADS  Google Scholar 

  56. D. Yılmaz, E. Boydaş, E. Cömert, Determination of mass attenuation coefficients and effective atomic numbers for compounds of the 3d transition elements. Radiat. Phys. Chem. 125, 65–68 (2016)

    ADS  Google Scholar 

  57. P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann Nuclear Energy 35(6), 1093–1097 (2008)

    Google Scholar 

  58. Şakar, E., Ö. F. Özpolat, B. Alım, M. I. Sayyed, and M. Kurudirek. "Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry." Radiation Physics and Chemistry 166 (2020): 108496.

    Google Scholar 

  59. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code. Results Phys. 12, 629–634 (2019)

    ADS  Google Scholar 

  60. Sayyed, M. I., Kawa M. Kaky, M. H. A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, and M.A. Bourham. "Borate multicomponent of bismuth rich glasses for gamma radiation shielding application." Radiation Physics and Chemistry 161 (2019): 77–82.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Al-Buriahi, M.S., Chalermpon, M. et al. Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phys. A 126, 78 (2020). https://doi.org/10.1007/s00339-019-3264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3264-7

Keywords

Navigation