Skip to main content
Log in

Production of W-based nanoparticles via spark erosion process along with their characterization and optimization for practical application in gas sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tungsten-based (W-based) nanoparticles are produced through electrochemical spark erosion process. In this investigation, the parametric effects of voltage, tool rotation and pulse on time on production rate of W-based nanoparticles are analyzed. The shape and size of the produced nanoparticles are controlled through proper controlling of the referred parameters. Small size particles are obtained with low voltage and pulse on time, but with high tool rotation speed. The ANN-predicted values of this study are in close agreement with the observed experimental values for all the test formulations. It can be concluded that the process optimization via ANN modeling has been found to be very efficient for determining the performance linked with the electrochemical spark erosion process. The devised neural network provided an average prediction error of 1.52% for training and 3.78% in case of testing. The formulated models can predict results which are in close agreement with the test results. The produced W-based nanoparticles are used for sensing the NO2 and CO2 gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Zhuiykov, L. Hyde, Z. Hai, M.K. Akbari, E. Kats, C. Detavernier, C. Xue, H. Xu, Appl. Mater. Today 6, 44 (2017)

    Google Scholar 

  2. H. Aliasghari, A.M. Arabi, H. Haratizadeh, Ceram. Int. 29, 403 (2019)

    Google Scholar 

  3. A.I. Inamdar, J. Kim, Y. Jo, H. Woo, S. Cho, S.M. Pawar, S. Lee, J.L. Gunjakar, Y. Cho, B. Hou, S. Cha, Sol. Energy Mater. Sol. 166, 78 (2017)

    Google Scholar 

  4. B. Li, X. Li, W. Li, Y. Wang, E. Uchaker, Y. Pei, X. Cao, S. Li, B. Huang, G. Cao, ChemNanoMat 2, 281 (2016)

    Google Scholar 

  5. H. Tong, Y. Xu, X. Cheng, X. Zhang, S. Gao, H. Zhao, L. Huo, Electrochim. Acta 210, 147 (2016)

    Google Scholar 

  6. Y. Li, K. Chang, H. Tang, B. Li, Y. Qin, Y. Hou, Z. Chang, Electrochim. Acta 298, 640 (2019)

    Google Scholar 

  7. G. Cai, J. Wang, P.S. Lee, Acc. Chem. Res. 49, 1469 (2016)

    Google Scholar 

  8. H. Najafi-Ashtiani, A. Bahari, S. Ghasemi, J. Electroanal. Chem. 774, 14 (2016)

    Google Scholar 

  9. D. Zhou, D. Xie, X. Xia, X. Wang, C. Gu, J. Tu, Sci. China Chem. 60, 3 (2017)

    Google Scholar 

  10. J. Zhang, X. Liu, G. Neri, N. Pinna, Adv. Mater. 28, 795 (2016)

    Google Scholar 

  11. W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, Y. Qin, J. Alloy. Compd. 679, 391 (2016)

    Google Scholar 

  12. S.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Appl. Phys. A 124, 567 (2018)

    ADS  Google Scholar 

  13. J. Reiser, M. Rieth, A. Möslang, B. Dafferner, A. Hoffmann, X. Yi, D.E. Armstrong, J. Nucl. Mater. 434, 357 (2013)

    ADS  Google Scholar 

  14. F. Amano, E. Ishinaga, A. Yamakata, J. Phys. Chem. C 117, 22584 (2013)

    Google Scholar 

  15. D. Sundaram, V. Yang, R.A. Yetter, Prog. Energy Combust. Sci. 61, 293 (2017)

    Google Scholar 

  16. H.J. Fecht, Nanostruct. Mater. 6, 33 (1995)

    Google Scholar 

  17. C.L. DeCastro, B.S. Mitchell, Nanoparticles from mechanical attrition, in Synthesis, Functionalization, and Surface Treatment of Nanoparticles, vol. 5, (American Scientific Publishers, California 2012)

    Google Scholar 

  18. N. Prabhu, S. Agilan, N. Muthukumarasamy, T.S. Senthil, Int. J. Chem. Technol. Res. 6, 3487 (2014)

    Google Scholar 

  19. N. Soultanidis, W. Zhou, C.J. Kiely, M.S. Wong, Langmuir 28, 17771 (2012)

    Google Scholar 

  20. D. Chen, L. Ge, L. Yin, H. Shi, D. Yang, J. Yang, R. Zhang, G. Shao, Sens. Actuator B-Chem. 15, 391 (2014)

    Google Scholar 

  21. T. Yang, Y. Zhang, C. Li, J. Alloys Compd. 584, 546 (2014)

    Google Scholar 

  22. I.T. Garcia, D.S. Corrêa, D.S. de Moura, J.C. Pazinato, M.B. Pereira, N.B. da Costa, Surf. Coat. Technol. 283, 177 (2015)

    Google Scholar 

  23. B. Behera, S. Chandra, Mat. Sci. Semicon. Proc. 86, 79 (2018)

    Google Scholar 

  24. N.V. Hieu, H.V. Vuong, N.V. Duy, N.D. Hoa, Sens. Actuator B-Chem. 171, 760 (2012)

    Google Scholar 

  25. R. Arunadevi, B. Kavitha, M. Rajarajan, A. Suganthi, Chem. Phys. Lett. 715, 252 (2019)

    ADS  Google Scholar 

  26. S. Anandan, T. Sivasankar, T. Lana-Villarreal, UltrasonSonochem 21, 2014 (1964)

    Google Scholar 

  27. L. Xiong, T. He, Chem. Mater. 18, 2211 (2006)

    Google Scholar 

  28. M.H. Abhudhahir, J. Kandasamy, Mat. Sci. Semicon. Proc. 40, 695 (2015)

    Google Scholar 

  29. A.A. Ashkarran, M.M. Ahadian, S.M. Ardakani, Nanotechnology 19, 195709 (2008)

    ADS  Google Scholar 

  30. P.K. Singh, P. Kumar, M. Hussain, A.K. Das, G.C. Nayak, Bull. Mater. Sci. 39, 469 (2016)

    Google Scholar 

  31. P. Kumar, P.K. Singh, M. Hussain, A.K. Das, Adv. Sci. Lett. 22, 3 (2016)

    Google Scholar 

  32. P.K. Singh, A.K. Das, G. Hatui, G.C. Nayak, Mater. Chem. Phys. 198, 16 (2017)

  33. S.K. Mandal, S. Kumar, P.K. Singh, S.K. Mishra, H. Bishwakarma, N.P. Choudhry, R.K. Nayak, A.K. Das, Thermochim. Acta 671, 36 (2018)

    Google Scholar 

  34. P.K. Singh, H. Bishwakarma, A.K. Das, J. Electron. Mater. 46, 5715 (2017)

    ADS  Google Scholar 

  35. P.K. Singh, P. Kumar, A.K. Das, Proc. Natl. Acad. Sci. India Sect. B Phys. Sci. 89, 199 (2018)

    Google Scholar 

  36. N. Sathisha, S.S.Hiremath, J. Shivakumar, Int. J. Recent Adv. Mech. Eng. 3, 69 (2014)

    Google Scholar 

  37. R.V. Rao, Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development (Springer Science and Business Media, Berlin, 2010)

    Google Scholar 

  38. D. Mylnikov, A. Efimov, V. Ivanov, Aerosol. Sci. Tech. 53, 1393 (2019)

    ADS  Google Scholar 

  39. Y.D. Chiang, H.Y. Lian, S.Y. Leo, S.G. Wang, Y. Yamauchi, K.C. Wu, J. Phys. Chem. C 115, 13158 (2011)

    Google Scholar 

  40. M.A. Gashkov, N.M. Zubarev, O.V. Zubareva, G.A. Mesyats, I.V. Uimanov, J. Exp. Theor. Phys. 122, 776 (2016)

    ADS  Google Scholar 

  41. T.E. Itina, Synthesis and Photonics of Nanoscale Materials XIII, vol. 9737 (International Society for Optics and Photonics, Bellingham, 2016), p. 973704

    Google Scholar 

  42. A.K. Majumder, P. Yerriswamy, J.P. Barnwal, Miner. Eng. 16, 1005 (2003)

    Google Scholar 

  43. H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, J. Alloys Compd. 662, 118 (2016)

    Google Scholar 

  44. C.S. Jawalkar, A.K. Sharma, P. Kumar, Int. J. Manuf. Tech. Manag. 28, 80 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushottam Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Mondal, S., Das, A.K. et al. Production of W-based nanoparticles via spark erosion process along with their characterization and optimization for practical application in gas sensor. Appl. Phys. A 126, 77 (2020). https://doi.org/10.1007/s00339-019-3259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3259-4

Keywords

Navigation