Skip to main content
Log in

The effect of tension twin on the dynamic recrystallization behavior in polycrystal magnesium by atomistic simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To investigate the \(\{10\bar{1}2\}\) tension twin effects on the dynamic recrystallization structure evolution in magnesium alloys, the compression deformation of a magnesium polycrystal containing an initial \(\{10\bar{1}2\}\) tension twin under different loading directions was simulated by molecular dynamics method. The results showed that the dynamic recrystallization phenomena only occurred when loading normal to twin boundary. By tracking atoms’ motion, it was found that the twin dynamic recrystallization microstructure evolution could be divided into two steps. Step one: basal partial dislocations nucleated near twin boundary, leading to large area of stacking faults; Step two: due to the accumulation of strain energy, non-basal slip systems nucleated in the stacking faults region, promoting the stacking faults to recover to hexagonal close-packed structure and forming the new grains. When loading parallel to twin boundary, the twin boundary migration dominated the deformation process, which released the strain energy and inhibited the nucleation of dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61, 818–843 (2013)

    Google Scholar 

  2. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, P. Beggs, Magnesium alloy applications in automotive structures. JOM 60, 57–62 (2008)

    Google Scholar 

  3. A. Luo, Magnesium: current and potential automotive applications. JOM 54, 42–48 (2002)

    Google Scholar 

  4. B. Verlinden, Severe plastic deformation of metals, Association of Metallurgical Engineers Serbia and Montenegr (2005)

  5. A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49, 1199–1207 (2001)

    Google Scholar 

  6. Z. Yu, H. Choo, Influence of twinning on the grain refinement during high-temperature deformation in a magnesium alloy. Scripta Mater. 64, 434–437 (2011)

    Google Scholar 

  7. AYu. Volkov, O.V. Antonova, B.I. Kamenetskii, I.V. Klyukin, D.A. Komkova, B.D. Antonov, Production, structure, texture, and mechanical properties of severely deformed magnesium. Phys. Metals Metallogr. 117, 518–528 (2016)

    ADS  Google Scholar 

  8. R. Alizadeh, R. Mahmudi, A.H.W. Ngan, Y. Huang, T.G. Langdon, Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion. Mater. Sci. Eng. A 651, 786–794 (2016)

    Google Scholar 

  9. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater. Des. 43, 31–39 (2013)

    Google Scholar 

  10. H. Hu, Y. Liu, D. Zhang, Z. Ou, The influences of extrusion-shear process on microstructures evolution and mechanical properties of AZ31 magnesium alloy. J. Alloys Compd. 695, 1088–1095 (2017)

    Google Scholar 

  11. X. Li, W. Xia, H. Yan, J. Chen, B. Su, M. Song, Z. Li, Y. Li, Dynamic recrystallization behaviors of high mg alloyed al-mg alloy during high strain rate rolling deformation. Mater. Sci. Eng. A 753, 59–69 (2019)

    Google Scholar 

  12. J. Jiang, M. Song, H. Yan, C. Yang, S. Ni, Deformation induced dynamic recrystallization and precipitation strengthening in an Mg–Zn–Mn alloy processed by high strain rate rolling. Mater. Char. 121, 135–138 (2016)

    Google Scholar 

  13. M.R. Barnett, Twinning and the ductility of magnesium alloys: Part I:“Tension” twins. Mater. Sci. Eng. A 464, 1–7 (2007)

    Google Scholar 

  14. M.R. Barnett, Twinning and the ductility of magnesium alloys: Part II:“Contraction” twins. Mater. Sci. Eng. A 464, 8–16 (2007)

    Google Scholar 

  15. P. Klimanek, A. Pötzsch, Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater. Sci. Eng. A 324, 145–150 (2002)

    Google Scholar 

  16. D. Yin, K. Zhang, F. Wang, W. Han, Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater. Sci. Eng. A 392, 320–325 (2005)

    Google Scholar 

  17. M.H. Yoo, I.K. Lee, Deformation twinning in hcp metals and alloys[J]. Philos. Mag. A 63, 987–1000 (1991)

    ADS  Google Scholar 

  18. H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Why are \(\{10\bar{1}2\}\) twins profuse in magnesium? Acta Materialia 85, 354–361 (2015)

    Google Scholar 

  19. F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, F. Pan, Microstructure, texture and mechanical properties evolution of pre-twinning Mg alloys sheets during large strain hot rolling. Mater. Sci. Eng. A 655, 92–99 (2016)

    Google Scholar 

  20. I.L. Valery, M.R. Arunabha, L.P. Dean, Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88, 054113 (2013)

    Google Scholar 

  21. I.L. Valery, M.R. Arunabha, Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91, 174109 (2015)

    Google Scholar 

  22. E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, K. Inal, Coupled crystal plasticity-Probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plastic. 66, 85–102 (2015)

    Google Scholar 

  23. E. Popova, A.P. Brahme, Y. Staraselski, S.R. Agnew, R.K. Mishra, K. Inal, Effect of extension \(\{10\bar{1}2\}\) twins on texture evolution at elevated temperature deformation accompanied by dynamic recrystallization. Mater. Des. 96, 446–457 (2016)

    Google Scholar 

  24. D.C. Rapaport, D.C.R. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  25. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    ADS  MATH  Google Scholar 

  26. D. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, D.J. Srolovitz, Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys. Rev. B 73, 024116 (2006)

    ADS  Google Scholar 

  27. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    ADS  Google Scholar 

  28. D. Faken, H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994)

    Google Scholar 

  29. W.B. Hutchinson, M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Mater. 63, 737–740 (2010)

    Google Scholar 

  30. G.D. Sim, G. Kim, S. Lavenstein, M. Hamza, H. Fan, J.A. EI-Awady, Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 144, 11–20 (2018)

    Google Scholar 

  31. A. Serra, D.J. Bacon, R.C. Pond, Comment on “atomic shuffling dominated mechanism for deformation twinning in magnesium”. Phys. Rev. Lett. 104, 029603 (2010)

    ADS  Google Scholar 

  32. C.D. Barrett, H. El Kadiri, The roles of grain boundary dislocations and disclinations in the nucleation of \(\{10\bar{1}2\}\) twinning. Acta Mater. 63, 1–15 (2014)

    Google Scholar 

  33. Q. Zu, X. Tang, S. Xu, Y. Guo, Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals. Acta Mater. 130, 310–318 (2017)

    Google Scholar 

  34. B. Li, E. Ma, Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys. Rev. Lett. 103, 035503 (2009)

    ADS  Google Scholar 

  35. A. Ostapovets, R. Gröger, Twinning disconnections and basal-prismatic twin boundary in magnesium. Model. Simul. Mater. Sci. Eng. 22, 025015 (2014)

    ADS  Google Scholar 

  36. C.D. Barrett, H. El Kadiri, Impact of deformation faceting on \(\{10\bar{1}2\}\), \(\{10\bar{1}1\}\) and \(\{10\bar{1}3\}\) embryonic twin nucleation in hexagonal close-packed metals. Acta Mater. 70, 137–161 (2014)

    Google Scholar 

  37. Y. Chen, L. Jin, J. Dong, Z.Y. Zhang, F.H. Wang, Twinning effects on the hot deformation behavior of AZ31 Mg alloy[J]. Mater. Char. 118, 363–369 (2016)

    Google Scholar 

  38. D. Guan, W.M. Rainforth, L. Ma, B. Wynne, J.H. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 126, 132–144 (2017)

    Google Scholar 

  39. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation. Mater. Sci. Eng. A 527, 52–60 (2009)

    Google Scholar 

  40. I. Basu, T. Al-Samman, Competitive twinning behavior in magnesium and its impact on recrystallization and texture formation. Mater. Sci. Eng. A 707, 232–244 (2017)

    Google Scholar 

  41. L. Yan, L. Xiao, Deformation behavior of a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy at elevated temperatures. J. Mater. Eng. Perform. 27, 905–914 (2018)

    Google Scholar 

  42. R.D. Doherty, D.A. Hughes, F.J. Humpheys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review. Mater. Sci. Eng. A 238, 219–274 (1997)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China [Grant No. 10772169], the Fundamental Research Funds for the Central Universities [WK 2480000002], and the Strategic Priority Research Program of Chinese Academy of Science [Grant No. XDB22040502].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Wang, Y., Wang, Y. et al. The effect of tension twin on the dynamic recrystallization behavior in polycrystal magnesium by atomistic simulation. Appl. Phys. A 126, 65 (2020). https://doi.org/10.1007/s00339-019-3255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3255-8

Keywords

Navigation