Skip to main content
Log in

A microwave-absorbing property of super-paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microwave-absorbing samples were fabricated using carbon black powder, super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles dispersed in a SiO2 matrix, epoxy resin, and hardener. The paint was then coated onto a steel substrate. The effects of super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles content (0–1.75 wt%) and different coating thickness (1–2.5 mm) on microwave absorption ability in the X-band frequency range (8–12 GHz) have been studied. The results showed that paint sample containing only carbon black (20 wt%) and epoxy resin (80 wt%) expressed low microwave absorption ability at 10 GHz centered frequency (≈ 67% absorption percentage). The super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles strongly affected the microwave-absorbing ability. A sample of 1.5 wt% super-paramagnetic Zn0.8Ni0.2Fe2O4 nanoparticles content exhibited highest microwave absorption at 10 GHz centered frequency (≈ 99% power attenuation). Higher coating thicknesses (1–2.5 mm) led to greater microwave absorption and reached a very high absorption of 2 mm thickness (≈ 99% absorption percentage at 10 GHz centered frequency).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.L. Gaylor, Radar Absorbing Materials-Mechanisms and Materials (Mater. Res. Lab, Cordite Avenue, Maribyrnong, Victoria, Australia, 1989)

    Google Scholar 

  2. Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao, Y. Chen, J. Phys. Chem. 111, 13696 (2007)

    Google Scholar 

  3. L. Liu, Y. Duan, L. Ma, S. Liu, Z. Yu, J. Appl. Surf. Sci. 257, 842 (2010)

    Article  ADS  Google Scholar 

  4. W. Meng, D. Yuping, L. Shunhua, L. Xiaogang, J. Zhijiang, J. Magn. Magn. Mater. 321, 3442 (2009)

    Article  ADS  Google Scholar 

  5. V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Compd. 489, 297 (2010)

    Article  Google Scholar 

  6. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. 246, 360 (2002)

    Article  ADS  Google Scholar 

  7. C.H. Peng, C.C. Hwang, J. Wan, J.S. Tsai, S.Y. Chen, Mater. Sci. Eng. B 117, 27 (2005)

    Article  Google Scholar 

  8. A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 462, 127–135 (2018). https://doi.org/10.1016/j.jmmm.2018.05.006

    Article  ADS  Google Scholar 

  9. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. TrukhanovJ, All. Comp. 791, 522 (2019)

    Article  Google Scholar 

  10. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9–16 (2019). https://doi.org/10.1016/j.jmmm.2018.12.101

    Article  ADS  Google Scholar 

  11. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, AYu. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanov, M. Zdorovets, J. All. Comp. 788, 1193 (2019)

    Article  Google Scholar 

  12. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, An.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, Charanjeet Singh, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1-x-(BaTiO3)x bicomponent ceramics, Ceram. Int. 44, 21295–21302 (2018). https://doi.org/10.1016/j.ceramint.2018.08.180.

    Article  Google Scholar 

  13. M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Comp. Part B. 174, 107054 (2019)

    Article  Google Scholar 

  14. J.H Oh, K.S Oh, C.G. Kim, C.S. Hong, J. Comp. Part B 35, 49 (2004)

  15. R. Schueler, J. Petermann, K. Schulte, H.P. Wentzel, J Appl Polym Sci 63, 1741 (1997)

    Article  Google Scholar 

  16. M.A. Almessiere, Y. Slimani, H. Güngüne, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials. 9, 24 (2019)

    Article  Google Scholar 

  17. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqati, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials. 9, 202 (2019)

    Article  Google Scholar 

  18. W.S. Chin, D.G. Lee, J. Comp. Struct. 77, 457 (2007)

    Article  Google Scholar 

  19. J.B. Kim, S.K. Lee, C.G. Kim, J. Comp. Sci. Tech. 68, 2909 (2008)

    Article  Google Scholar 

  20. O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, Magnetic anisotropy of the graphite nanoplatelet-epoxy and MWCNT-epoxy composites with aligned barium ferrite filler. J. Mat. Sci. 52, 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4

    Article  ADS  Google Scholar 

  21. O.S. Yakovenko, LYu. Matzui, L.L. Vovchenko, O.V. Lozitsky, O.I. Prokopov, O.A. Lazarenko, A.V. Zhuravkov, V.V. Oliynyk, V.L. Launets, S.V. Trukhanov, A.V. Trukhanov, Mol. Cryst. Liq. Crys. 661, 68 (2018)

    Article  Google Scholar 

  22. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, J. Magn. Magn. Mater. 271, 207 (2004)

    Article  ADS  Google Scholar 

  23. L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, J. Carbon 73, 185 (2014)

    Article  Google Scholar 

  24. G.R. Amiri, M.H. Yousefi, M.R. Aboulhassani, M.H. Keshavarz, D. Shahbazi, S. Fatahian, M. Alahi, Diges J. Nanomater. and Biostruc. 5, 719 (2010)

    Google Scholar 

  25. A.T.Q. Luong, D.V. Nguyen, Inter. J. Mater. Res. 109, 555 (2018)

    Google Scholar 

  26. A.T.Q. Luong, D.V. Nguyen, Mater. Express 9, 344 (2019)

    Article  Google Scholar 

  27. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909 (2008)

    Article  ADS  Google Scholar 

  28. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu. Matzui, E.L. Trukhanova, S.V. Trukhanov, Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

    Article  Google Scholar 

  29. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu. Macuy, E.L. Trukhanov, Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram Int. 44, 13520–13529 (2018). https://doi.org/10.1016/j.ceramint.2018.04.183

    Article  Google Scholar 

  30. I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ, J. Phys.: Condens. Matter 12, L155–L158 (2000). https://doi.org/10.1088/0953-8984/12/7/103.

    ADS  Google Scholar 

  31. S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Barner, J. Mag and Mag. Mater 237, 276 (2001)

    Article  ADS  Google Scholar 

  32. S.V. Trukhanov, J. Mater. Chem. 13, 347 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology, VNU-HCM, under Grant number BK-SDH-2020-1680937

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Thi Quynh Anh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, L.T.Q., Van Dan, N. A microwave-absorbing property of super-paramagnetic zinc–nickel ferrite nanoparticles in the frequency range of 8–12 GHz. Appl. Phys. A 126, 67 (2020). https://doi.org/10.1007/s00339-019-3251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3251-z

Keywords

Navigation