Skip to main content
Log in

Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A modification to the conventional anti-reflection coating (ARC) is proposed to improve the performance of the amorphous silicon solar cells. The performance is improved by replacing the conventional anti-reflection coating (ARC) by a modified ARC. The modified ARC has an embedded array of silver Yagi–Uda nanoantenna. Due to the highly directive and broadband characteristics of Yagi–Uda nanoantenna, the modified ARC minimizes the reflection over large range wavelengths and guides the incoming solar radiation towards absorber layer effectively which results in increased absorption and subsequent increase in the short-circuit current density. Solar cell with proposed ARC exhibits 1.66 times improved short-circuit current density and 1.43 times increased conversion efficiency. To the best of our knowledge, this is the first report on a Yagi–Uda nanoantenna incorporated in a solar cell to improve its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.D. Lee, A.U. Ebong, A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017). https://doi.org/10.1016/j.rser.2016.12.028

    Article  Google Scholar 

  2. X. Zhang, R.J. Knize, Y. Lu, Enhancing light absorption in thin-film tandem solar cells using a bottom metallic nanograting. Appl. Phys. A 115, 509–515 (2013). https://doi.org/10.1007/s00339-013-8075-7

    Article  ADS  Google Scholar 

  3. M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in modified grating thin-film solar cell. IEEE Photon. J. 9(3), 2700314 (2017). https://doi.org/10.1109/JPHOT.2017.2698720

    Article  Google Scholar 

  4. A. Pahuja, M.S. Parihar, V.D. Kumar, Performance enhancement of thin film solar cell using two-dimensional plasmonic grating in rear electrode. IEEE Trans. Nanotechnol. 18, 626–634 (2019). https://doi.org/10.1109/TNANO.2019.2924053

    Article  ADS  Google Scholar 

  5. M.K. Hossain, Q.A. Drmosh, A.W. Mukhaimer, H.M. Bahaidarah, Silver nanoparticles on conducting electrode: a simple two-step process for realizing plasmonic solar cell design. Appl. Phys. A 117, 459–465 (2014). https://doi.org/10.1007/s00339-014-8682-y

    Article  Google Scholar 

  6. N.K. Pathak, H. Pathak, G.K. Pandey, A. Ji, R.P. Sharma, Study of external quantum efficiency of plasmonic coupled bilayer active device: influence of layer thickness and nanoparticle filling factor. Appl. Phys. A 122(1048), 1–8 (2016). https://doi.org/10.1007/s00339-016-0574-x

    Article  Google Scholar 

  7. A.D. Khan, J. Iqbal, S. ur Rehman, Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Appl. Phys. A 124(610), 1–9 (2018). https://doi.org/10.1007/s00339-018-2033-3

    Article  Google Scholar 

  8. A. Pahuja, M.S. Parihar, V.D. Kumar, Performance enhancement of thin film solar cell based on extra ordinary transmission. Superlattices Microstruct. 1, 81–87 (2018). https://doi.org/10.1016/j.spmi.2018.02.017

    Article  ADS  Google Scholar 

  9. P. Muhlschlegel et al., Resonant optical antennas. Science 308, 1607–1608 (2005). https://doi.org/10.1126/science.1111886

    Article  ADS  Google Scholar 

  10. N. Kashyap, Z.A. Wani, R. Jain, V.D. Kumar, Investigation of a nanostrip patch antenna in optical frequencies. Appl. Phys. A 117(2), 725–729 (2014). https://doi.org/10.1007/s00339-014-8730-7

    Article  Google Scholar 

  11. F. Taghian, V. Ahmadi, L. Yousefi, Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. IEEE J. Lightwave Technol. 34, 1267–1273 (2016). https://doi.org/10.1109/JLT.2015.2511542

    Article  ADS  Google Scholar 

  12. M. Di Vece et al., Plasmonic nano-antenna a-Si:H solar cell. Opt. Express 20(25), 27327–27336 (2012). https://doi.org/10.1364/OE.20.027327

    Article  ADS  Google Scholar 

  13. Y. Yu et al., Dielectric core−shell optical antennas for strong solar absorption enhancement. Nano Lett. 12(7), 3674–3681 (2012). https://doi.org/10.1021/nl301435r

    Article  ADS  Google Scholar 

  14. A. Pahuja, M.S. Parihar, V.D. Kumar, Investigation of Euler spiral nanoantenna and its application in absorption enhancement of thin film solar cell. Opt. Quantum Electron. 50(401), 1–11 (2018). https://doi.org/10.1007/s11082-018-1665-z

    Article  Google Scholar 

  15. Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, M. Gu, Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Opt. Mater. Express 3, 489–495 (2013)

    Article  ADS  Google Scholar 

  16. F. Cortés-Juan et al., Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. J. Renew. Sustain. Energy 5, 033116 (2013)

    Article  Google Scholar 

  17. W.-J. Ho, S.-K. Fen, J.-J. Liu, Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl. Phys. A 124(29), 1–8 (2017)

    Google Scholar 

  18. D. Dregely et al., 3D optical Yagi–Uda nanoantenna array. Nat. Commun. 2(267), 1–7 (2011). https://doi.org/10.1038/ncomms1268

    Article  Google Scholar 

  19. CST Studio Suite (version 2019), Simulia, Dassault Systems. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

  20. FDTD Solutions (version 8.21.1882) 2019, Lumerical Solutions, Inc., Vancouver, BC, Canada. https://www.lumerical.com/

  21. https://www.topsectorenergie.nl/sites/default/files/uploads/Urban%20energy/kennisdossier/Thin%20Film%20PV%20technologies.pdf. Accessed Nov 2019

  22. ASTM, Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra, 2005. https://rredc.nrel.gov/solar/spectra/am1.5. Accessed Jun 2019

  23. N. Liu et al., Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008). https://doi.org/10.1038/nmat2072

    Article  ADS  Google Scholar 

  24. E.C. Jordan, K.G. Balmain, Electromagnetic waves and radiating systems, 2nd edn. (Prentice Hall, Inc., Englewood Cliffs, 1968), pp. 360–365

    Google Scholar 

  25. T.J. Brockett, H. Rajagopalan, R.B. Laghumavarapu, D. Hufakker, Y. Rahmat-Samii, Electromagnetic characterization of high absorption sub-wavelength optical nanostructure photovoltaics for solar energy harvesting. IEEE Trans. Antennas Propag. 61(4), 1518–1527 (2013)

    Article  ADS  Google Scholar 

  26. D. Neamen, Semiconductor physics & devices, 3rd edn. (McGraw-Hill, New York, 2003), pp. 150–200

    Google Scholar 

  27. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/NPHOTON.2014.134

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Pahuja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahuja, A., Parihar, M.S. & Kumar, V.D. Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating. Appl. Phys. A 126, 70 (2020). https://doi.org/10.1007/s00339-019-3250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3250-0

Keywords

Navigation