Skip to main content
Log in

The effects of varying the annealing period on the structure, morphology and optical properties of MgAl2O4:0.1% Mn2+ nanophosphors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, magnesium aluminate nanopowders doped with manganese ions (MgAl2O4:0.1% Mn2+) were prepared by citrate sol–gel technique. The consequences on the structural, morphological and optical properties when varying the annealing period (AP) at a fixed annealing temperature of 800 °C and dopant concentration (0.1% Mn2+) were investigated. The AP was varied at the range of 1–6 h. X-ray powder diffraction (XRD) results showed that doping with 0.1% Mn2+ and varying the AP did not influence the crystal structure of the host (un-doped) material. The scanning electron microscope (SEM) images suggested that doping does not influence the morphology of the prepared nanopowders and varying the AP slightly influence the particle size. Transition electron microscopy (TEM) image suggested that the crystallite sizes were below 15 nm. The ultraviolet–visible (UV–Vis) diffuse reflection spectroscopy showed that the band gap of the MgAl2O4:0.1% Mn2+ can be tuned from 5.04 to 4.58 eV with varying AP. Photoluminescence (PL) results showed two emission peaks located at around 413 and 655 nm. They were attributed to the defect levels within the host material and to the (4T1 → 6A1) transitions of Mn2+, respectively. Increasing the AP significantly influences the luminescence of the prepared powders. The CIE coordinate results showed that the bluish emission colour can be changed to the violet region when AP was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Oshio, K. Kitamura, T. Shigeta, J. Lumin. Dis. Phos. Elec. Soc 146, 392–399 (1999)

    Article  Google Scholar 

  2. L. Cornu, M. Dutttine, M. Gaudon, V. Jubera, J. Matter. Chem. C 2, 9512–9552 (2014)

    Article  Google Scholar 

  3. L.H. Ha, P.T. Lanh, N.N. Long, T.T. Loan, J. Phys: Conf. Ser. 187, 1742–6596 (2009)

    Google Scholar 

  4. H. Muraki, Y. Fujitani, Appl. Catal. 47, 75–84 (1989)

    Article  Google Scholar 

  5. J. Sehested, A. Carlsson, T.V.W. Janssens, P.L. Hansen, A.K. Datye, J. Catal. 197, 200–209 (2001)

    Article  Google Scholar 

  6. T. Sharmal, B.S. Arora, Int. J. Res. Adv. Tech. 3, 2321–9637 (2015)

    Google Scholar 

  7. Y. Fan, X.B. Lu, Y.W. Ni, H.J. Zhang, M.W. Zhu, Y. Li, C. Jiping, Appl. Catal. B Envriron. 101, 606–612 (2011)

    Article  Google Scholar 

  8. J. Xiaolin, Z. Haijun, Y. Yongjie, L. Zhanjie, Mater. Sci. Eng. A 379, 112–118 (2004)

    Article  Google Scholar 

  9. R.E. Carter, J. Am, Ceram. Soc. 3, 116–120 (1961)

    Article  Google Scholar 

  10. C.T. Wang, L.S. Lin, S.J. Yang, J. Am, Ceram. Soc. 75, 1151–2916 (1992)

    Google Scholar 

  11. L. Cornu, M. Duttine, M. Gaudon, V. Jubera, J. Mater. Chem. C 1, 1–3 (2015)

    Google Scholar 

  12. S. Li, S.Y. Zhao, T.N. Ye, X.W. Wu, K.X. Wang, X. Wei, J.S. Chen, J. Comput. Biol. Poly. 5, 17–25 (2017)

    Google Scholar 

  13. M. Wan, K. He, H. Hong, Q. Wang, Q. Chen, Cond. Matter. 547, 111–119 (2018)

    Google Scholar 

  14. L.T. Melato, T.E. Motaung, O.M. Ntwaeaborwa, S.V. Motloung, Opt. Mater. 66, 319–326 (2017)

    Article  ADS  Google Scholar 

  15. R. Zhong, J. Zhang, H. Wei, X. Qi, M. Li, X. Han, Chem. Phy. Lett. 508, 207–209 (2011)

    Article  ADS  Google Scholar 

  16. R.C. Peterson, G.A. Lager, R.L. Hitterman, Am. Miner. 76, 1455–1458 (1991)

    Google Scholar 

  17. B.D. Cullity, S.R. Sock, Elements of X-ray Diffraction, vol. 3 (Pearson Education, Reading, 2001), pp. 402–404

    Google Scholar 

  18. W. Yuting, C. Jing, Y. Suye, J.A. Enric, S. Muhammad, W. Ziyuan, P. Wei, Scie. Rep. 6, 32711–32718 (2016)

    Article  Google Scholar 

  19. S.V. Motloung, P. Kumari, L.F. Koao, T.E. Motaumg, T.T. Hlatshayo, M.J. Mochane, Mater. Today Commun. 14, 294–301 (2018)

    Article  Google Scholar 

  20. S.V. Motloung, B.F. Dejene, R.E. Kroom, O.M. Ntwaeaborwa, H.C. Swart, T.E. Motaung, Opt. 131, 705–712 (2017)

    Google Scholar 

  21. S.V. Motloung, K.G. Tshabalala, R.E. Kroon, T.E. Hlatshwayo, M. Mlambo, S. Mpelane, J. Mol. Struct. 1175, 241–252 (2019)

    Article  ADS  Google Scholar 

  22. Y. Mostafa, S.I. Nassar, S.A. Ahmed, Mol Bio Spectro 131, 329–334 (2014)

    Article  Google Scholar 

  23. S.V. Motloung, M. Tsega, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, L.F. Koao, T.E. Motaung, M.J. Hato, J. Alloy Comput. 677, 72–79 (2016)

    Article  Google Scholar 

  24. S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, X.T. Zu, Sci. Rep. 5, 12849–12854 (2015)

    Article  ADS  Google Scholar 

  25. S.K. Sampath, D.G. Kanhere, R. Pandey, J. Phys, Condens. Matter 11, 3635–3644 (1999)

    Article  ADS  Google Scholar 

  26. B.E. Sernelius, K.F. Berggren, Z.C. Zin, I. Hamberg, C.G. Graqvist, Phys. Rev. B 37, 8–10244 (1988)

    Google Scholar 

  27. S.S. Raj, S.K. Gupta, V. Grover, K.P. Muthe, V. Natarajan, A.K. Tyagi, J. Mol. Struct. 1089, 81–85 (2015)

    Article  ADS  Google Scholar 

  28. G.P. Summers, G.S. White, K.H. Lee, J.H. Crawford Jr., Phys. Rev. B 21, 6–15 (1980)

    Google Scholar 

  29. A. Ibarra, D. Bravo, F.J. Lopez, F.A. Garner, J. Nucl. Mater. 336, 156–162 (2005)

    Article  ADS  Google Scholar 

  30. V.M. Maphiri, F.B. Dejene, S.V. Motloung, Res. Phys. 7, 3510–3521 (2017)

    Google Scholar 

  31. R. Zhong, J. Zhang, H. Wei, X. Qi, M. Li, X. Han, Chem. Phys. Lett. 508, 207–209 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the South African National Research Foundation (NRF) Thuthuka programme (Fund Numbers: UID 99266 and 113947), NRF incentive funding for rated researchers (IPRR) (Grant No: 114924). Dr James Wesley-Smith at Electron Microscopy Unit at Sefako Makgatho Health Science University is acknowledged for the SEM and TEM imagings.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Dlamini or S. V. Motloung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dlamini, C., Mhlongo, M.R., Koao, L.F. et al. The effects of varying the annealing period on the structure, morphology and optical properties of MgAl2O4:0.1% Mn2+ nanophosphors. Appl. Phys. A 126, 75 (2020). https://doi.org/10.1007/s00339-019-3248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3248-7

Keywords

Navigation