Skip to main content
Log in

Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Development of multipurpose materials like graphene–silver hybrid nanocomposite has attracted much appreciation in recent years because of their improved synergistic properties like higher effective surface area, high electron mobility, stability, and biocompatibility. Here, we report the synthesis, characterization, and multifunctional properties of reduced graphene oxide/silver (rGO/Ag) nanohybrid. This novel material shows promising results against two antibiotic resistant bacteria—Escherichia coli and Bacillus subtilis. The toxicity study on Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) was done by the evaluation of cell viability through Resazurin-based Microtitre Dilution Assay (RMDA). We have observed that this nanohybrid is more effective against Bacillus subtilis than Escherichia coli which is different from the conventional observations. With Dalton’s Lymphoma Ascites cells (DLA), we have examined short-term in vitro cytotoxicity of this nanohybrid by trypan blue dye exclusion technique. The anticancer response of this nanohybrid was recorded with Human Colon epithelial carcinoma cells (HCT-15) as well by MTT assay. We also report SERS effect of (rGO/Ag) substrate in detecting very small amounts of Rhodamine B molecules by estimating the analytical enhancement factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. V. Edwards-Jones, Lett. Appl. Microbiol. 49, 147 (2009)

    Google Scholar 

  2. I. Chopra, J. Antimicrob. Chemother. 59, 587 (2007)

    Google Scholar 

  3. H.J. Klasen, Burns 26, 117 (2000)

    Google Scholar 

  4. W. Linlin, H. Chen, S. Longquan, Int. J. Nanomed. 12, 1227 (2017)

    Google Scholar 

  5. A.C. Burdușel, O. Gherasim, A.M. Grumezescu, L. Mogoantă, A. Ficai, E. Andronescu, Nanomaterials 8, 1 (2018)

    Google Scholar 

  6. N.R. Chowdhury, M. MacGregor-Ramiasa, P. Zilm, P. Majewski, K. Vasilev, J. Colloid Interface Sci. 482, 151 (2016)

    ADS  Google Scholar 

  7. Y. Zhou, R.C. Tang, J. Photochem. Photobiol. B Biol. 178, 463 (2018)

    Google Scholar 

  8. S. Prabhu, E.K. Poulose, Int. Nano Lett. 2, 32 (2012)

    Google Scholar 

  9. S. Anandhakumar, V. Mahalakshmi, A.M. Raichur, Mater. Sci. Eng. C 32, 2349 (2012)

    Google Scholar 

  10. C. Wan, J. Tai, J. Zhang, Y. Guo, Q. Zhu, D. Ling, F. Gu, J. Gan, C. Zhu, Y. Wang, S. Liu, F. Wei, Q. Cai, Cell Death Dis. 10 (2019)

  11. R. Foulkes, M. Ali Asgari, A. Curtis, C. Hoskins, ACS Appl. Nano Mater. 2, 1758 (2019)

    Google Scholar 

  12. P. Karuppaiya, E. Satheeshkumar, H.S. Tsay, Mol. Biol. Rep. 46, 4725 (2019)

    Google Scholar 

  13. J. Venkatesan, S. Kim, M. Shim, Nanomaterials 6, 235 (2016)

    Google Scholar 

  14. M. Buttacavoli, N.N. Albanese, G. Di Cara, R. Alduina, C. Faleri, M. Gallo, G. Pizzolanti, G. Gallo, S. Feo, F. Baldi, P. Cancemi, Oncotarget 9, 9685 (2018)

    Google Scholar 

  15. K. Vasanth, K. Ilango, R. MohanKumar, A. Agrawal, G.P. Dubey, Colloids Surf. B Biointerfaces 117, 354 (2014)

    Google Scholar 

  16. R.M. Gengan, K. Anand, A. Phulukdaree, A. Chuturgoon, Colloids Surf. B Biointerfaces 105, 87 (2013)

    Google Scholar 

  17. A.A. Kajani, S.H. Zarkesh-Esfahani, A.K. Bordbar, A.R. Khosropour, A. Razmjou, M. Kardi, J. Mol. Liq. 223, 549 (2016)

    Google Scholar 

  18. V. De Matteis, M. Cascione, C.C. Toma, S. Leporatti, Nanomaterials 8 (2018)

  19. T.K. Naqvi, A.K. Srivastava, M.M. Kulkarni, A.M. Siddiqui, P.K. Dwivedi, Appl. Surf. Sci. 478, 887 (2019)

    ADS  Google Scholar 

  20. P. Mosier-Boss, Nanomaterials 7, 142 (2017)

    Google Scholar 

  21. Z.L. Taixing Tan, C. Tian, Z. Ren, J. Yang, Y. Chen, L. Sun, J.Y., H. F. Aiping Wu, Phys.Chem. Chem. Phys 15, 21034 (2013)

  22. Z. Zhang, K. Bando, K. Mochizuki, A. Taguchi, K. Fujita, S. Kawata, Anal. Chem. 91, 3254 (2019)

    Google Scholar 

  23. W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, A.C.S. Appl, Mater. Interfaces 7, 6966 (2015)

    Google Scholar 

  24. S. Kulshrestha, S. Qayyum, A.U. Khan, Microb. Pathog. 103, 167 (2017)

    Google Scholar 

  25. S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R.M.F.R.A. Rahman, Nanoscale Res. Lett. 7, 1 (2012)

    Google Scholar 

  26. P. Paik, J. Nanomed. Res. 5 (2017)

  27. M.Y. Xia, Y. Xie, C.H. Yu, G.Y. Chen, Y.H. Li, T. Zhang, Q. Peng, J. Control. Rel. 307, 16 (2019)

    Google Scholar 

  28. A.C.M. de Moraes, B.A. Lima, A.F. de Faria, M. Brocchi, O.L. Alves, Int. J. Nanomed. 10, 6847 (2015)

    Google Scholar 

  29. S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, ACS Nano 5, 6971 (2011)

    Google Scholar 

  30. I. Barbolina, C.R. Woods, N. Lozano, K. Kostarelos, K. S. Novoselov, I.S. Roberts, 2D Mater. 3, 1 (2016)

    Google Scholar 

  31. M. Sawangphruk, P. Srimuk, P. Chiochan, T. Sangsri, P. Siwayaprahm, Carbon N. Y. 50, 5156 (2012)

    Google Scholar 

  32. J.A. Jaleel, S. Sruthi, K. Pramod, J. Control. Rel. 255, 218 (2017)

    Google Scholar 

  33. J. Liu, J. Dong, T. Zhang, Q. Peng, J. Control. Rel. 286, 64 (2018)

    Google Scholar 

  34. X. Xu, X. Tang, X. Wu, X. Feng, J. Photochem. Photobiol. B Biol. 191, 1 (2019)

    Google Scholar 

  35. T.T. Pham, H.T. Nguyen, C.D. Phung, S. Pathak, S. Regmi, D.H. Ha, J.O. Kim, C.S. Yong, S.K. Kim, J.E. Choi, S. Yook, J.B. Park, J.H. Jeong, J. Ind. Eng. Chem. 76, 310 (2019)

    Google Scholar 

  36. S. He, K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L. Li, S. Song, C. Fan, Anal. Chem. 84, 4622 (2012)

    Google Scholar 

  37. L. Ouyang, L. Yao, T. Zhou, L. Zhu, Anal. Chim. Acta 1027, 83 (2018)

    Google Scholar 

  38. X. Li, J. Chem. 2018, 1 (2018)

    Google Scholar 

  39. P. Karthick Kannan, P. Shankar, C. Blackman, C.H. Chung, Adv. Mater (2019)

  40. D. Cialla, S. Pollok, C. Steinbrücker, K. Weber, J. Popp, Nanophotonics 3, 383 (2014)

    ADS  Google Scholar 

  41. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Google Scholar 

  42. M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, R. Boukherroub, Colloids Surf. B Biointerfaces 105, 128 (2013)

    Google Scholar 

  43. M. Moghayedi, E.K. Goharshadi, K. Ghazvini, H. Ahmadzadeh, L. Ranjbaran, R. Masoudi, R. Ludwig, Colloids Surf. B Biointerfaces 159, 366 (2017)

    Google Scholar 

  44. M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 6, 71 (2016)

    Google Scholar 

  45. S.D. Sarker, L. Nahar, Y. Kumarasamy, Methods 42, 321 (2007)

    Google Scholar 

  46. F. Palomino, J.C. Martin, A. Camacho, M. Guerra, H. Swings, J. Portaels, Antimicrob. Agents Chemother. 46, 2720 (2002)

  47. W. Strober, Curr. Protoc. Immunol. 111, 1 (2015)

    Google Scholar 

  48. T. Mosmann, J Immunol Methods. 65, 55 (1983)

    Google Scholar 

  49. L.C. Crowley, B.J. Marfell, M.E. Christensen, N.J. Waterhouse, Cold Spring Harb. Protoc. 2016, 643 (2016)

    Google Scholar 

  50. P. Chamoli, M.K. Das, K.K. Kar, Phys. E Low Dimens. Syst. Nanostruct. 90, 76 (2017)

    ADS  Google Scholar 

  51. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Nano Lett. 9, 1593 (2009)

    ADS  Google Scholar 

  52. N. Díez, A. ͆liwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, RSC Adv. 5, 81831 (2015)

    Google Scholar 

  53. C. Xu, X. Wang, Small 5, 2212 (2009)

    Google Scholar 

  54. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010)

    Google Scholar 

  55. A. Soroush, W. Ma, Y. Silvino, M.S. Rahaman, Environ. Sci. NANO 2, 395 (2015)

    Google Scholar 

  56. J. Li, C.Y. Liu, Eur. J. Inorg. Chem. 1244 (2010)

    Google Scholar 

  57. V. Bansal, V. Li, A.P. O’Mullane, S.K. Bhargava, CrystEngComm 12, 4280 (2010)

    Google Scholar 

  58. V.H. Nguyen, B.K. Kim, Y.L. Jo, J.J. Shim, J. Supercrit. Fluids 72, 28 (2012)

    Google Scholar 

  59. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, Carbon N. Y. 53, 38 (2013)

    Google Scholar 

  60. Y.G. Yuan, S. Gurunathan, Int. J. Nanomed. 12, 6537 (2017)

    Google Scholar 

  61. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, J. Colloid Interface Sci. 430, 108 (2014)

    ADS  Google Scholar 

  62. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    ADS  Google Scholar 

  63. Y. Xiao, J. Liu, Y. Lin, W. Lin, Y. Fang, J. Alloys Compd. 698, 170 (2017)

    Google Scholar 

  64. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Google Scholar 

  65. S. Fathalipour, E. Abdi, Synth. Met. 221, 159 (2016)

    Google Scholar 

  66. E.Ç. Salihi, J. Wang, D.J.L. Coleman, L. Šiller, Sep. Sci. Technol. 51, 1317 (2016)

    Google Scholar 

  67. I. Roy, D. Rana, G. Sarkar, A. Bhattacharyya, N.R. Saha, S. Mondal, S. Pattanayak, S. Chattopadhyay, D. Chattopadhyay, RSC Adv. 5, 25357 (2015)

    Google Scholar 

  68. K.H. Tseng, H.C. Ku, D.C. Tien, L. Stobinski, Nanomaterials 9 (2019)

    Google Scholar 

  69. Y. Liu, Y. Zhang, T. Zhang, Carbon N. Y. 71, 166 (2014)

    Google Scholar 

  70. C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 4, 2429 (2010)

    Google Scholar 

  71. A.R. Kumarasinghe, L. Samaranayake, F. Bondino, E. Magnano, N. Kottegoda, E. Carlino, U.N. Ratnayake, A.A.P. De Alwis, V. Karunaratne, G.A.J. Amaratunga, J. Phys. Chem. C 117, 9507 (2013)

    Google Scholar 

  72. L. He, S.C. Tjong, RSC Adv. 7, 2058 (2017)

    Google Scholar 

  73. S. Cui, S. Mao, Z. Wen, J. Chang, Y. Zhang, J. Chen, Analyst 138, 2877 (2013)

    ADS  Google Scholar 

  74. H. Ma, J. Zeng, S. Harrington, L. Ma, M. Ma, X. Guo, Y. Ma, Nanomaterials 6, 1 (2016)

    ADS  Google Scholar 

  75. J. Zeng, X. Tian, J. Song, Z. Wei, S. Harrington, Y. Yao, L. Ma, Y. Ma, J. Mater. Sci. Mater. Electron. 27, 3540 (2016)

    Google Scholar 

  76. X.Z. Tang, X. Li, Z. Cao, J. Yang, H. Wang, X. Pu, Z.Z. Yu, Carbon N. Y. 59, 93 (2013)

    Google Scholar 

  77. Y. Gao, S. Zhao, G. Zhang, L. Deng, J. Li, R. Sun, L. Li, C.P. Wong, J. Mater. Sci. 50, 3399 (2015)

    ADS  Google Scholar 

  78. K.S.W. Sing, Pure Appl. Chem. 57, 603 (1985)

    Google Scholar 

  79. S.M. Hosseini, H. Hosseini-Monfared, V. Abbasi, M.R. Khoshroo, Inorg. Chem. Commun. 67, 72 (2016)

    Google Scholar 

  80. S. Zhang, S. Gai, F. He, S. Ding, L. Li, P. Yang, Nanoscale 6, 11181 (2014)

    ADS  Google Scholar 

  81. D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, RSC Adv. 5, 67394 (2015)

    Google Scholar 

  82. C.J. Cai, M.W. Xu, S.J. Bao, C.C. Ji, Z.J. Lu, D.Z. Jia, Nanotechnology 24, 275602 (2013)

    Google Scholar 

  83. H. Wadhwa, D. Kumar, S. Mahendia, S. Kumar, Mater. Chem. Phys. 194, 274 (2017)

    Google Scholar 

  84. Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, Int. J. Nanomed. 13, 3311 (2018)

    Google Scholar 

  85. Z. Yang, X. Hao, S. Chen, Z. Ma, W. Wang, C. Wang, L. Yue, H. Sun, Q. Shao, V. Murugadoss, Z. Guo, J. Colloid Interface Sci. 533, 13 (2019)

    ADS  Google Scholar 

  86. K. Prasad, G.S. Lekshmi, K. Ostrikov, V. Lussini, J. Blinco, M. Mohandas, K. Vasilev, S. Bottle, K. Bazaka, K. Ostrikov, Sci. Rep. 7 (2017)

  87. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, J. Nanobiotechnol. 15, 1 (2017)

    Google Scholar 

  88. S. Wu, X. Zhao, Z. Cui, C. Zhao, Y. Wang, L. Du, Y. Li, Int. J. Nanomed. 9, 1413 (2014)

    Google Scholar 

  89. S. Gurunathan, M. Kang, M. Jeyaraj, J. Kim, Nanomaterials 9, 1 (2019)

    Google Scholar 

  90. S. Gurunathan, M. Kang, M. Jeyaraj, J. Kim, Int. J. Mol. Sci. 20, 1 (2019)

    Google Scholar 

  91. M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal, S. Gurunathan, Int. J. Nanomed. 5, 753 (2010)

    Google Scholar 

  92. Y.G. Yuan, Y.H. Wang, H.H. Xing, S. Gurunathan, Int. J. Nanomed. 12, 5819 (2017)

    Google Scholar 

  93. F. Shaheen, M. Hammad Aziz, M. Fakhar-e-Alam, M. Atif, M. Fatima, R. Ahmad, A. Hanif, S. Anwar, F. Zafar, G. Abbas, S. Ali, M. Ahmed, Nanomaterials 7, 401 (2017)

    Google Scholar 

  94. Z. Zhang, F. Xu, W. Yang, M. Guo, X. Wang, B. Zhang, J. Tang, Chem. Commun. 47, 6440 (2011)

    Google Scholar 

  95. J. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B 109, 12544 (2005)

    Google Scholar 

  96. X. Liu, Y. Shao, Y. Tang, K.F. Yao, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  97. X. Yu, J. Tao, Y. Shen, G. Liang, T. Liu, Y. Zhang, Q.J. Wang, Nanoscale 6, 9925 (2014)

    ADS  Google Scholar 

  98. A.K. Nair, K.B. Bhavitha, S. Perumbilavil, P. Sankar, D. Rouxel, M.S. Kala, S. Thomas, N. Kalarikkal, Carbon N. Y. 132, 380 (2018)

    Google Scholar 

  99. Y. Li, X. Zhao, P. Zhang, J. Ning, J. Li, Z. Su, G. Wei, J. Mater. Chem. C 3, 4126 (2015)

    Google Scholar 

  100. C.H. Sun, M.L. Wang, Q. Feng, W. Liu, C.X. Xu, Russ. J. Phys. Chem. A 89, 291 (2015)

    Google Scholar 

  101. Y. Xie, Y. Meng, RSC Adv. 4, 41734 (2014)

    Google Scholar 

  102. X. Zhao, J. Yu, C. Zhang, C. Chen, S. Xu, C. Li, Z. Li, S. Zhang, A. Liu, B. Man, Appl. Surf. Sci. 455, 1171 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

Author Priya Parvathi Ameena Jose acknowledges University Grants Commission (UGC, India) for providing financial support under FDP scheme (F. No. FIP/12th Plan/KLMG008 TF 08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, P.P.A., Kala, M.S., Joseph, A.V. et al. Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications. Appl. Phys. A 126, 58 (2020). https://doi.org/10.1007/s00339-019-3237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3237-x

Keywords

Navigation