Skip to main content
Log in

High-performance microwave absorption properties of Ti3SiC2/Al2O3 coatings prepared by plasma spraying

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Ti3SiC2/Al2O3 coatings were prepared by plasma spraying process for the microwave absorption application. The coatings showed a dense structure with a few pores and unmelted region, and the Ti3SiC2 distributes uniformly in the coatings. The XRD was used to identify the phase composition of the coatings. The results indicated that the as-sprayed Ti3SiC2/Al2O3 coatings were composed of α-Al2O3 and γ-Al2O3, Ti3SiC2, TiC and Ti5Si3. The TiC and Ti5Si3 phases resulted from the Ti3SiC2 decomposition during the plasma spraying process. The complex permittivity of Ti3SiC2/Al2O3 coatings enhanced significantly with increasing the Ti3SiC2 content. When the Ti3SiC2 content was 20 wt. % and the coating thickness was 1.3 mm, the RL value of the coating can reach a minimum of − 24.4 dB at 11.1 GHz and RL value ≤ − 10 dB bandwidth in the frequency range of 10.1–12.4 GHz. Spherical instrumented scratch had been carried out on the Ti3SiC2/Al2O3 coatings to investigate the single-point abrasive wear behavior. Typical brittle fracture such as microcracks in the residual groove and grain dislodgement was observed in Ti3SiC2/Al2O3 coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Meng, H. Wang, F. Huang, Y. Guo et al., Compos. Part B Eng. 137, 260–277 (2018)

    Article  Google Scholar 

  2. B. Quan, X. Liang, G. Ji et al., J. Alloy. Compd. 728, 1065–1075 (2017)

    Article  Google Scholar 

  3. M. Bhattacharya, T. Basak, Energy. 97, 306–338 (2016)

    Article  Google Scholar 

  4. M. Katiyar, M. Prasad, K. Agarwal et al., Con Neth. 10, 1831–1839 (2018)

    Google Scholar 

  5. H. Ahmed, J. Hyun, J. Lee, Measurement 125, 114–122 (2018)

    Article  Google Scholar 

  6. M. Katiyar, M. Prasad, K. Agarwal et al., Silicon Neth. 10, 1435–1439 (2018)

    Google Scholar 

  7. S. Kumar, R. Chatterjee, J. Magn. Magn. Mater. 448, 88–93 (2018)

    Article  ADS  Google Scholar 

  8. H. Yang, Y. Tang, X. Sun et al., J. Mater. Sci. Mater. 28, 14874–14883 (2017)

    Article  Google Scholar 

  9. K.H. Wu, T.H. Ting, G.P. Wang et al., Polym. Degrad. Stabil. 93, 483–488 (2008)

    Article  Google Scholar 

  10. Y. Liu, Y. Zhang, X. Wang et al., J. Phys Chem C. 122, 6357–6367 (2018)

    Article  Google Scholar 

  11. E. Handoko, S. Iwan, S. Budi et al., Mater. Res. Express. 5, 1–9 (2018)

    Article  Google Scholar 

  12. Y. Qing, W. Zhou, F. Luo et al., J. Magn. Magn. Mater. 323, 600–606 (2011)

    Article  ADS  Google Scholar 

  13. A. Wang, W. Wang, C. Long et al., J. Mater Chem C. 2, 3769–3776 (2014)

    Article  Google Scholar 

  14. R. Shu, G. Zhang, X. Wang et al., Chem. Eng. J. 337, 3769–3776 (2018)

    Article  Google Scholar 

  15. X. Huang, J. Zhang, W. Wang et al., J. Magn. Magn. Mater. 405, 36–41 (2016)

    Google Scholar 

  16. H. Zhang, S. Shen, X. Liu et al., T. Nonferr. Metal. Soc. 28, 1774–1783 (2018)

    Article  Google Scholar 

  17. J. Yang, L.M. Pan, W. Gu et al., Ceram. Int. 38, 159–168 (2012)

    Article  Google Scholar 

  18. Y. Liu, X. Jian, X. Su et al., J. Alloy. Compd. 740, 68–76 (2018)

    Article  Google Scholar 

  19. Y. Liu, F. Luo, J. Su et al., J. Alloy. Compd. 632, 623–628 (2015)

    Article  Google Scholar 

  20. Z. Lia, X. Wei, F. Luo et al., Ceram. Int. 40, 2545–2549 (2014)

    Article  Google Scholar 

  21. Y. Liu, F. Luo, J. Alloy. Compd. 576, 2545–2549 (2013)

    Google Scholar 

  22. V. Carnicer, M. Jose Orts, R. Moreno et al., Ceram. Int. 44, 12014–12020 (2018)

    Article  Google Scholar 

  23. J. Yu, Y. Wang, F. Zhou, L. Wang et al., Appl. Surf. Sci. 431, 2545–2549 (2018)

    Article  Google Scholar 

  24. L. Guo, J. Peng, G. Kou et al., Ceram. Int. 43, 8989–8998 (2017)

    Article  Google Scholar 

  25. W. Fan, Y. Bai, Ceram. Int. 42, 14299–14312 (2016)

    Article  Google Scholar 

  26. M.F. Smith, A.C. Hall, J.D. Fleetwood et al., Coatings. 1, 117–132 (2011)

    Article  Google Scholar 

  27. M.O. Bora, O. Coban, T. Sinmazcelik et al., Mater. Des. 31, 2707–2715 (2010)

    Article  Google Scholar 

  28. Y. Chen, D. Zhao, F. Qi et al., Ceram. Int. 44, 3277–3281 (2018)

    Article  Google Scholar 

  29. J. Gao, X. Xiong, Y. Gao, J. Mater. Sci.: Mater. Electron. 28, 12015–12020 (2017)

    Google Scholar 

  30. S. Goel, S. Bjorklund, N. Curry et al., Surf. Coat. Tech. 315, 80–87 (2017)

    Article  Google Scholar 

  31. Z.M. Sun, Y.C. Zhou, M.S. Li, Corros. Sci. 43, 1095–1109 (2001)

    Article  Google Scholar 

  32. Z. Sun, Y. Zhou, M. Li, Acta Mater. 49, 4347–4353 (2001)

    Article  Google Scholar 

  33. Y. Khoptiar, I. Gotman, J. Eur. Ceram. Soc. 23, 47–53 (2003)

    Article  Google Scholar 

  34. P.D. Bourkas, C. Dervos, M. Eleftheriou et al., Phys. Scripta. 42, 737–740 (1990)

    Article  ADS  Google Scholar 

  35. K.C. Kao, Dielectric phenomena in solids (Academic press, Cambridge, 2004)

    Google Scholar 

  36. Y. Qing, Q. Wen, F. Luo et al., J. Mater Chem. C. 4, 371–375 (2016)

    Article  Google Scholar 

  37. Yi Liu, Fa Luo, Su Jingbu et al., J. Electron. Mater. 44, 1920–1923 (2015)

    Google Scholar 

  38. Y. Xie, H.M. Hawthorne, Wear 233, 293–305 (1999)

    Article  Google Scholar 

  39. P.W. Bridgeman, Studies in Large Plastic Flow and Fracture (Mc-Graw-Hill, New York, 1952)

    Google Scholar 

Download references

Acknowledgements

This research work was financially supported by National Key R&D Program of China (2018YFB1105801), National Natural Science Foundation of China (Grant numbers: 51501121, 51475315, 51775360), China Postdoctoral Science Foundation (Grant number: 2016M601879), Jiangsu Postdoctoral Science Foundation (Grant number: 1601120C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongGuang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Xia, S., Wang, Y. et al. High-performance microwave absorption properties of Ti3SiC2/Al2O3 coatings prepared by plasma spraying. Appl. Phys. A 126, 69 (2020). https://doi.org/10.1007/s00339-019-3236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3236-y

Keywords

Navigation