Skip to main content
Log in

Influence of deposition temperature on the structural and dispersion parameters of TiO2 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline TiO2 thin films were deposited onto quartz substrates using RF magnetron sputtering technique at different substrate temperatures (573 K, 623 K, 673 K, and 773 K). X-ray diffraction (XRD) measurements revealed the isolation of anatase phase with (101) preferred crystal orientation for the film deposited at 773 K. Moreover, the topographical features of this film clarified the smoothness of the deposited films, with root mean square roughness (RMS) of 0.5 nm. The optical properties of the as-prepared thin films at different deposition temperatures was enlightened through structural correlation. Most of the films were transparent with transmittance intensity extending from 50 to 90% within the visible range. Due to the smoothness of the deposited films, the transmittance and reflectance spectra exhibited an oscillatory behavior. Additionally, from single effective oscillator model, the dispersion parameters were estimated. For the deposited films, the single oscillator energy (Eo), dispersion energy (Ed), lattice dielectric constant (εL), and infinite permittivity (ε) extended in the range (3.42 ~ 3.99), (9.83 ~ 24.12), (4.39 ~ 7.75), and (3.88 ~ 7.04), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Hayakawa et al., Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sens. Actuators B Chem. 62(1), 55–60 (2000)

    Google Scholar 

  2. K. Eufinger et al., Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl. Surf. Sci. 254(1), 148–152 (2007)

    ADS  Google Scholar 

  3. S.Z. Islam et al., N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis. Microporous Mesoporous Mater 220, 120–128 (2016)

    Google Scholar 

  4. A. Rapsomanikis et al., High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air. Sol. Energy Mater. Sol. Cells 151, 36–43 (2016)

    Google Scholar 

  5. O. Krško et al., Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens. Actuators B Chem. 240, 1058–1065 (2017)

    Google Scholar 

  6. R. Pandey et al., Synthesis and characterization of TiO2 thin films for optoelectronic applications. J. Pure Appl. Ind. Phys. 5(10), 289–297 (2015)

    Google Scholar 

  7. J.-H. Kim et al., Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films. Ceram. Int. 42(12), 14071–14076 (2016)

    Google Scholar 

  8. H.K. Pulker, G. Paesold, E. Ritter, Refractive indices of TiO2 films produced by reactive evaporation of various titanium–oxygen phases. Appl. Opt. 15(12), 2986–2991 (1976)

    ADS  Google Scholar 

  9. F. De Angelis et al., Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114(19), 9708–9753 (2014)

    Google Scholar 

  10. J. Dewhurst, J. Lowther, High-pressure structural phases of titanium dioxide. Phys. Rev. B 54(6), R3673 (1996)

    ADS  Google Scholar 

  11. D. Su, S. Dou, G. Wang, Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 27(17), 6022–6029 (2015)

    Google Scholar 

  12. S.-D. Mo, W. Ching, Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys. Rev. B 51(19), 13023 (1995)

    ADS  Google Scholar 

  13. H. Frederikse, Recent studies on rutile (TiO2). J. Appl. Phys. 32(10), 2211–2215 (1961)

    ADS  Google Scholar 

  14. R.V. Nair et al., Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation. J. Phys. D Appl. Phys. 51(4), 045107 (2018)

    ADS  Google Scholar 

  15. A. Miyoshi, S. Nishioka, K. Maeda, Water splitting on rutile TiO2-based photocatalysts. Chem. A Eur. J. 24(69), 18204–18219 (2007)

    Google Scholar 

  16. S.D. Yoon et al., Electronic transport in oxygen deficient ferromagnetic semiconducting TiO2−δ. J. Phys. Condens. Matter 19(32), 326202 (2007)

    Google Scholar 

  17. M. Khan et al., Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol–gel spin coating. Results Phys. 7, 1437–1439 (2017)

    ADS  Google Scholar 

  18. J.-P. Niemelä, G. Marin, M. Karppinen, Titanium dioxide thin films by atomic layer deposition: a review. Semicond. Sci. Technol. 32(9), 093005 (2017)

    ADS  Google Scholar 

  19. H. Chandrashekara et al., Isochronal effect of optical studies of TiO2 thin films deposited by spray pyrolysis technique. Adv. Sci. Lett. 22(4), 739–744 (2016)

    Google Scholar 

  20. C. Garlisi, G. Palmisano, Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass. Appl. Surf. Sci. 420, 83–93 (2017)

    ADS  Google Scholar 

  21. A. Ishii et al., Low-temperature preparation of high-n TiO+ thin film on glass by pulsed laser deposition. Appl. Surf. Sci. 347, 528–534 (2015)

    ADS  Google Scholar 

  22. A.M. Alotaibi et al., Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films. Chem. Mater. 30(4), 1353–1361 (2018)

    Google Scholar 

  23. V. Bukauskas et al., Effect of substrate temperature on the arrangement of ultra-thin TiO2 films grown by a dc-magnetron sputtering deposition. Thin Solid Films 585, 5–12 (2015)

    ADS  Google Scholar 

  24. A. Majeed et al., Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering. Nanoscale Res. Lett. 10(1), 56 (2015)

    ADS  Google Scholar 

  25. M. El-Nahass et al., Effect of annealing on structural and optical properties of copper tetraphenylporphyrin (CuTPP) thin films. Opt. Laser Technol. 64, 28–33 (2014)

    ADS  Google Scholar 

  26. J. Muscat, V. Swamy, N.M. Harrison, First-principles calculations of the phase stability of TiO2. Phys. Rev. B 65(22), 224112 (2002)

    ADS  Google Scholar 

  27. P.I. Gouma, M.J. Mills, Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 84(3), 619–622 (2001)

    Google Scholar 

  28. S. Nezar et al., Properties of TiO2 thin films deposited by rf reactive magnetron sputtering on biased substrates. Appl. Surf. Sci. 395, 172–179 (2017)

    ADS  Google Scholar 

  29. V. Besserguenev et al., TiO2 thin film synthesis from complex precursors by CVD, its physical and photocatalytic properties. Int. J. Photoenergy 5(2), 99–105 (2003)

    Google Scholar 

  30. D.P. Oyarzún et al., Atomic force microscopy (AFM) and 3D confocal microscopy as alternative techniques for the morphological characterization of anodic TiO2 nanoporous layers. Mater. Lett. 165, 67–70 (2016)

    Google Scholar 

  31. P.B. Nair et al., Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films. Prog. Nat. Sci. Mater. Int. 24(3), 218–225 (2014)

    Google Scholar 

  32. X. Xu et al., Effect of thermal annealing on structural properties, morphologies and electrical properties of TiO2 thin films grown by MOCVD. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 37(5), 431–439 (2002)

    Google Scholar 

  33. Z. Zhang, M.G. Lagally, Atomistic processes in the early stages of thin-film growth. Science 276(5311), 377–383 (1997)

    Google Scholar 

  34. A. Abuelwafa et al., Influence of annealing temperature on structural and optical properties of nanocrystalline platinum octaethylporphyrin (PtOEP) thin films. Opt. Mater. 49, 271–278 (2015)

    ADS  Google Scholar 

  35. M. El-Nahass, M. Emam-Ismail, M. El-Hagary, Structural, optical and dispersion energy parameters of nickel oxide nanocrystalline thin films prepared by electron beam deposition technique. J. Alloys Compd. 646, 937–945 (2015)

    Google Scholar 

  36. A. Darwish et al., Linear and nonlinear optical properties of GeSe2-xSnx (0 ≤ x ≤ 0.8) thin films for optoelectronic applications. J. Alloys Compd. 709, 640–645 (2017)

    Google Scholar 

  37. P. Deák, B. Aradi, T. Frauenheim, Oxygen deficiency in TiO2: similarities and differences between the Ti self-interstitial and the O vacancy in bulk rutile and anatase. Phys. Rev. B 92(4), 045204 (2015)

    ADS  Google Scholar 

  38. B. Astinchap, R. Moradian, K. Gholami, Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers. Mater. Sci. Semicond. Process. 63, 169–175 (2017)

    Google Scholar 

  39. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J. Solid State Chem. 240, 43–48 (2016)

    ADS  Google Scholar 

  40. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93(3), 632 (1954)

    ADS  Google Scholar 

  41. C. Yang et al., Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation. Appl. Surf. Sci. 254(9), 2685–2689 (2008)

    ADS  Google Scholar 

  42. J.H. Park et al., Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties. J. Korean Phys. Soc. 49, S584 (2006)

    Google Scholar 

  43. B. Zhu et al., The effects of substrate temperature on the structure and properties of ZnO films prepared by pulsed laser deposition. Vacuum 82(5), 495–500 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-5-662-1441). The author, therefore, gratefully acknowledges the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Fouda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, A.N. Influence of deposition temperature on the structural and dispersion parameters of TiO2 thin films. Appl. Phys. A 126, 48 (2020). https://doi.org/10.1007/s00339-019-3226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3226-0

Navigation