Skip to main content
Log in

Phase structure, microstructure and electrical properties of PCNS–PZ–PT ternary ceramics near the morphotropic phase boundary

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, (0.54 − x)Pb(Cr1/5,Ni1/5,Sb3/5)O3-0.46PbZrO3-xPbTiO3 ceramic powders were synthesized by the conventional solid-state reaction process (where x = 0.42, 0.44, 0.46, 0.48 and 0.50). The obtained samples have been characterized using different techniques such as X-ray Diffraction (XRD) which reveals that the samples consist of a mixture of tetragonal and rhombohedral phases (morphotropic phase boundary MPB) in the range of 0.46 ≤ x ≤ 0.48, scanning electron microscopy (SEM) which shows an increase of the average grain size in the morphotropic phase boundary, dielectric measurements and Raman spectroscopy have been performed to get more insights into the effects of titanium dopant (Ti) content on the properties of PCNS–PZ–PT ceramics near the morphotropic phase boundary (MPB). It was found that the ceramic sintered at 1180 °C with Ti = 46% achieves excellent dielectric properties (εr = 17,641.58, tan δ = 0.120 and Tc = 576 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Panigrahi, P.R. Das, R. Padhee, R.N.P. Choudhary, Effect of Gd on dielectric and piezoelectric properties of lead zirconate titanate ferroelectric ceramics. Ferroelectrics 524, 14–29 (2018)

    Article  Google Scholar 

  2. C.K. Barlingay, S.K. Dey, Dopant compensation mechanism and leakage current in Pb (Zr0.52Ti0.48)O3 thin films. Thin Solid Films 272, 112–115 (1996)

    Article  ADS  Google Scholar 

  3. S. Adel, C. Bouremel, D. Djafri, M. Bouaziz, Effect of Cr2O3 and Fe2O3 doping on the thermal activation of un-polarized PZT charge carriers. Bol. Soc. Esp. Cerám. Vidr. 57, 124–131 (2018)

    Article  Google Scholar 

  4. R. Vaish, Piezoelectric and pyroelectric materials selection. Int. J. Appl. Ceram. Technol. (2013). https://doi.org/10.1111/j.1744-7402.2012.02765.x

    Article  Google Scholar 

  5. S. Patel, R. Vaish, Effect of sintering temperature and dwell time dependent dynamic hysteresis scaling behavior of (Ba0.85Ca0.075Sr0.075)(Ti0.90Zr0.10)O3 ceramics. Ferroelectrics 505, 52–66 (2016)

    Article  Google Scholar 

  6. S.Y. Chu, T.Y. Chen, I. Tsai, W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuator A Phys. 113, 198–203 (2004)

    Article  Google Scholar 

  7. B. Sahoo, P.K. Panda, Dielectric, ferroelectric and piezoelectric properties of (1-x)[Pb0.91La0.09(Zr0.60Ti0.40)O3]–x[Pb(Mg1/3Nb2/3)O3]. J. Mater. Sci. 42, 4270–4275 (2007)

    Article  ADS  Google Scholar 

  8. P. Gonnard, M. Troccaz, Dopant distribution between A and B sites in the PZT ceramics of type ABO3.. J. Solid. State. Chem. (1978). https://doi.org/10.1016/0022-4596(78)90080-4

    Article  Google Scholar 

  9. B. Sahoo, P.K. Panda, Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J. Adv. Ceram. 2, 37–41 (2013)

    Article  Google Scholar 

  10. K. Kakegawa, J. Mohri, K. Takahashi, H. Yamamura, S. Shirasaki, A compositional fluctuation and properties of Pb(Zr, Ti)O3.. Solid. State. Commun. 24, 769–772 (1977)

    Article  ADS  Google Scholar 

  11. P. Ari-Gur, L. Benguigui, X-ray study of the PZT solid solutions near the morphotropic phase transition. Solid. State. Commun. 15, 1077–1079 (1974)

    Article  ADS  Google Scholar 

  12. A. Boutarfaia, investigations of co-existence region in lead zirconate-titanate solid solutions: X-ray di€raction studies. Ceram. Int. 26, 583–587 (2000)

    Article  Google Scholar 

  13. H.R. Rukimini, R.N.P. Choudhary, V.V. Rao, Diffused phase transition in Pb0.91(La1−z/3, Liz)0.09(Zr0.65Ti0.35)0.9775O3 ceramics. J. Phys. Chem. Solids. (1998). https://doi.org/10.1016/S0022-3697(98)00076-6

    Article  Google Scholar 

  14. H.R. Rukimini, R.N.P. Choudhary, D.L. Prabhakara, Sintering temperature dependent ferroelectric phase transition of Pb0.91(La1−z/3, Liz)0.09(Zr0.65Ti0.35)0.9775O3. J. Phys. Chem. Solids. 61, 1735–1743 (2000 )

    Article  ADS  Google Scholar 

  15. N. Abdessalem, A. Boutarfaia, Effect of composition on the electromechanical properties of Pb[ZrxTi(0.9-x)(Cr1/5, Zn1/5, Sb3/5)0.1]O3 ceramics. Ceram. Int. 33, 293–296 (2007)

    Article  Google Scholar 

  16. A. Meklid, A. Boutarfaia, The effects of sintering temperature and titanium ratio on structural and electrical properties of new PZT-CNS ceramics. Model Meas Control C. (2018 ). https://doi.org/10.18280/mmc_c.790101

    Article  Google Scholar 

  17. N. Kumari, S. Monga, M. Arif, N. Sharma, A. Singh, V. Gupta, P.M. Vilarinho, R.S. Katiyar., Higher permittivity of Ni-doped lead zirconate titanate, Pb[(Zr0.52Ti0.48)(1–x) Nix]O3, ceramics. Ceram. Int. 45, 4398–4407 (2019)

    Article  Google Scholar 

  18. H. Menasra, Z. Necira, K. Bounabe, M. Abba, A. Meklid, A. Boutarfaia, Structural and electrical characterization of La3+ substituted PMS-PZT (Zr/Ti:60/40) ceramics. Mater. Sci. Poland. (2018 ). https://doi.org/10.1515/msp-2018-0033

    Article  Google Scholar 

  19. S.C. Panigrahi, P.R. Das, B.N. Parida, H.B.K. Sharma, R.N.P. Chaudhary, Effect of Gd-substitution on dielectric and transport properties of lead zirconate titanate ceramics. J. Mater. Sci. Mater Electron. 24, 3275–3283 (2013)

    Article  Google Scholar 

  20. A. Kumar, S.K. Mishra, Dielectric, piezoelectric, and ferroelectric properties of lanthanum-modified PZTFN ceramics. Int. J. Miner. Metall. Mater. 21, 1019–1027 (2014)

    Article  Google Scholar 

  21. R. Laishram, O.P. Thakur, D.K. Bhattacharya, K. Harsh, Dielectric and piezoelectric properties of La doped lead zinc niobate–lead zirconium titanate ceramics prepared from mechano-chemically activated powders. Mater. Sci. Eng. B. 172, 172–176 (2010)

    Article  Google Scholar 

  22. R.A. Lefever, K.H. Hellwege, A.M. Hellwege, Magnetic and other properties of oxides and related compounds part A. (Landolt-Börnstein–Group III Condensed Matter 4a, New York, 1970)

  23. M.E. Lines, A.M. Glass, Principle and application of ferroelectrics and related materials. (Clarndon Press, Oxford, 1977), p. 680

  24. F. Benabdallah, Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1-x)BaTi0.8Zr0.2O3-xBa0.7Ca0.3TiO3/corrélations structures et propriétés. (thèse.fr, 2013). https://tel.archives-ouvertes.fr/tel-00879222

  25. H.R. Rukimini, R.N.P. Choudhary, V.V. Rao, Effect of doping pairs (La, Na) on structural and electrical properties of PZT ceramics. Mater. Chem. Phys. 55, 108–114 (1998). https://doi.org/10.1016/S0254-0584(98)00144-8

    Article  Google Scholar 

  26. H. Liu, R. Nie, Y. Yue, Q. Zhang, Q. Chen, J. Zhu, P. Yu, D. Xiao, C. Wang, X. Wang, Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNNPZT ceramics. Ceram. Int. 41, 11359–11364 (2015). https://doi.org/10.1016/j.ceramint.2015.05.094

    Article  Google Scholar 

  27. Z. He, J. Ma, R. Zhang, T. Li, PZT-based materials with bilayered structure: preparation and ferroelectric properties. J. Eur. Ceram. Soc. 23, 1943–1947 (2003)

    Article  Google Scholar 

  28. B. Tareev, Physics of dielectric materials (Mir Publisher, Moscow, 1975), p. 157

    Google Scholar 

  29. V. Koval, C. Alemany, J. Briancin, H. Brunckova, Dielectric properties and phase transition behavior of xPMN-(1–x)PZT ceramic systems. J. Electroceram. 10, 19–26 (2003)

    Article  Google Scholar 

  30. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4793400

    Article  Google Scholar 

  31. M.K. Zhu, P.X. Lu, Y.D. Hou, X.M. Song, H. Wang, H. Yan, Analysis of phase coexistence in Fe2O3-doped 0.2PZN–0.8PZT ferroelectric ceramics by Raman scattering spectra. J. Am. Ceram. Soc. 89, 3739–3744 (2006)

    Article  Google Scholar 

  32. D. Bauerle, A. Pinczuk, Low frequency vibrational modes and the phase transitions of rhombohedral PbTi1-xrxO3.. Solid State Commun. 19, 1169–1171 (1976 )

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhek Meklid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meklid, A., Hachani, S.E., Necira, Z. et al. Phase structure, microstructure and electrical properties of PCNS–PZ–PT ternary ceramics near the morphotropic phase boundary . Appl. Phys. A 126, 32 (2020). https://doi.org/10.1007/s00339-019-3209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3209-1

Navigation