Effect of sample morphology on the spectral and spatiotemporal characteristics of laser-induced plasmas from aluminum


Species stratification and local plasma composition can affect microsecond-timescale oxidation reaction rates of metals such as Al in an oxidizing atmosphere. Here, we utilize fast, gated emission spectroscopy and a high-speed framing camera to determine the intensity and spatiotemporal evolution of various Al ablation products within a laser-induced plasma. Using a high-purity Al plate, micron- and nano-sized Al powders, and inert micron Al2O3 powder, we studied the effect of Al morphology and reactivity on the oxidation characteristics and plasma hydrodynamics in air at 1 atm over two temporal regimes (2–10 μs and 20–100 μs). We observed an increase in the spatial distribution and intensity of emission from vaporized Al within the plasma for powder-based samples compared to plate Al due to enhanced material dispersion. In nano-Al, AlO emission forms at, and propagates along, the surface of the powder bed from 2–10 μs, whereas for micron powder, there is a delay in AlO formation within the bulk of the plasma until tens of microseconds. We measured electron densities from a variety of spectral lines, which can range from ~ 2 × 1015 to 2 × 1018 cm−3, and which scale inversely with the rate of plasma expansion across morphologies. The Al I and Al II species temperatures from 2 to 10 μs calculated via Boltzmann plots are similar (from ~ 10,000 to 14,000 K), and we performed a suite of local thermodynamic equilibrium (LTE) validity calculations to establish that these two species are in LTE, while H is not. Using image co-registration, we calculated the thickness of the AlO layer surrounding the expanding Al cloud at times > 20 μs, which can range from ~ 50 to 300 μm. These results allow us to begin to understand the complexities of laser ablated metal powder reactions at microsecond timescales.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd edn. (Wiley, Singapore, 2013)

    Google Scholar 

  2. 2.

    Y.-F. Lu, Z.-B. Tao, M.-H. Hong, Characteristics of excimer laser induced plasma from an aluminum target by spectroscopic study. Jpn. J. Appl. Phys. 38, 2958–2963 (1999)

    ADS  Google Scholar 

  3. 3.

    B. Le Drogoff, F. Vidal, S. Laville, M. Chaker, T. Johnston, O. Barthélemy, J. Margot, M. Sabsabi, Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl. Opt. 44(2), 278–281 (2005)

    ADS  Google Scholar 

  4. 4.

    T.N. Piehler, F.C. De Lucia, C.A. Munson, B.E. Homan, A.W. Miziolek, K.L. McNesby, Temporal evolution of the laser-induced breakdown spectroscopy spectrum of aluminum metal in different bath gases. Appl. Opt. 44(18), 3654–3660 (2005)

    ADS  Google Scholar 

  5. 5.

    C.G. Parigger, J.O. Hornkohl, L. Nemes, Measurements of aluminum and hydrogen microplasma. Appl. Opt. 46(19), 4026–4031 (2007)

    ADS  Google Scholar 

  6. 6.

    N.M. Shaikh, S. Hafeez, B. Rashid, M.A. Baig, Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser. Eur. Phys. J. D 44(2), 371–379 (2007)

    ADS  Google Scholar 

  7. 7.

    G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, P.A. Benedetti, Observation of different mass removal regimes during the laser ablation of an aluminium target in air. J. Anal. At. Spectrom. 23, 1518–1528 (2008)

    Google Scholar 

  8. 8.

    G. Cristoforetti, Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms. Spectrochim. Acta Part B 64(1), 26–34 (2009)

    ADS  Google Scholar 

  9. 9.

    G. Cristoforetti, G. Lorenzetti, P.A. Benedetti, E. Tognoni, S. Legnaioli, V. Palleschi, Effect of laser parameters on plasma shielding in single and double pulse configurations during the ablation of an aluminium target. J. Phys. D 42(22), 225207 (2009)

    ADS  Google Scholar 

  10. 10.

    E.H. Piepmeier, H. Malmstadt, Q-switched laser energy absorption in plume of an aluminum alloy. Anal. Chem. 41(6), 700 (1969)

    Google Scholar 

  11. 11.

    B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T.W. Johnston, S. Laville, F. Vidal, Y. von Kaenel, Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys. Spectrochim. Acta Part B 56(6), 987–1002 (2001)

    ADS  Google Scholar 

  12. 12.

    O. Barthélemy, J. Margot, S. Laville, F. Vidal, M. Chaker, B. Le Drogoff, T.W. Johnston, M. Sabsabi, Investigation of the state of local thermodynamic equilibrium of a laser-produced aluminum plasma. Appl. Spectrosc. 59(4), 529–536 (2005)

    ADS  Google Scholar 

  13. 13.

    O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, B. Le Drogoff, Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma. Spectrochim. Acta Part B 60(7–8), 905 (2005)

    ADS  Google Scholar 

  14. 14.

    W.T.Y. Mohamed, Fast LIBS identification of aluminum alloys. Prog. Phys. 2, 87 (2007)

    Google Scholar 

  15. 15.

    A.H. Galmed, M.A. Harith, Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies. Appl. Phys. B 91(3–4), 651–660 (2008)

    ADS  Google Scholar 

  16. 16.

    Q.L. Ma, V. Motto-Ros, W.Q. Lei, M. Boueri, X.S. Bai, L.J. Zheng, H.P. Zeng, J. Yu, Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: interplay with the ambient gas. Spectrochim. Acta, Part B 65(11), 896–907 (2010)

    ADS  Google Scholar 

  17. 17.

    I. Mehboob, J. Iqbal, M. Rafique, M.A. Baig, R. Ahmed, Optical spectroscopic study of laser-produced aluminum plasma. IEEE Trans. Plasma Sci. 46(8), 2920–2929 (2018)

    ADS  Google Scholar 

  18. 18.

    M.A. Ismail, H. Imam, A. Elhassan, W.T. Youniss, M.A. Harith, LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom. 19(4), 489–494 (2004)

    Google Scholar 

  19. 19.

    A. Freedman, F.J. Iannarilli Jr., J.C. Wormhoudt, Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy. Spectrochim. Acta Part B 60(7–8), 1076 (2005)

    ADS  Google Scholar 

  20. 20.

    M. Sabsabi, P. Cielo, Quantitative-analysis of aluminum-alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49(4), 499–507 (1995)

    ADS  Google Scholar 

  21. 21.

    P. Inakollu, T. Philip, A.K. Rai, F.-Y. Yueh, J.P. Singh, A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochim. Acta Part B 64(1), 99–104 (2009)

    ADS  Google Scholar 

  22. 22.

    J.M. Lightstone, J.R. Carney, C.J. Boswell, J. Wilkinson, J. Wilkinson, J.M. Lightstone, C.J. Boswell, J.R. Carney, Time-resolved spectroscopic measurements of aluminum oxidation in a laser ablation event. AIP Conf. Proc. 955(1), 1255–1258 (2007)

    ADS  Google Scholar 

  23. 23.

    J.L. Gottfried, Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles. Appl. Opt. 51(7), B13–B21 (2012)

    Google Scholar 

  24. 24.

    X. Bai, V. Motto-Ros, W. Lei, L. Zheng, J. Yu, Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air. Spectrochim. Acta Part B 99, 193–200 (2014)

    ADS  Google Scholar 

  25. 25.

    S.S. Harilal, B.E. Brumfield, B.D. Cannon, M.C. Phillips, Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas. Anal. Chem. 88(4), 2296–2302 (2016)

    Google Scholar 

  26. 26.

    C. Kimblin, R. Trainham, G.A. Capelle, X. Mao, R.E. Russo, Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations. AIP Adv. 7, 095208 (2017)

    ADS  Google Scholar 

  27. 27.

    J.L. Gottfried, S.W. Dean, C.-C. Wu, J. Frank, C. De Lucia, Optimizing the performance of aluminized explosives: laser-based measurements of energy release and spectroscopic diagnostics, IEEE RAPID, Miramar Beach, FL, paper #WB3–3 (2019)

  28. 28.

    J.L. Gottfried, S.W. Dean, C.-C. Wu, J. Frank, C. De Lucia, Measuring fast and slow energy release from aluminum powders, APS SCCM (Shock19), Portland, OR, in press (2019).

  29. 29.

    J.L. Gottfried, Influence of exothermic chemical reactions on laser-induced shock waves. Phys. Chem. Chem. Phys. 16, 21452–21466 (2014)

    Google Scholar 

  30. 30.

    J.L. Gottfried, E.J. Bukowski, Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance. Appl. Opt. 56(3), B47–B57 (2017)

    Google Scholar 

  31. 31.

    R. Viskup, B. Praher, T. Stehrer, J. Jasik, H. Wolfmeir, E. Arenholz, J.D. Pedarnig, J. Heitz, Plasma plume photography and spectroscopy of Fe–oxide materials. Appl. Surf. Sci. 255(10), 5215–5219 (2009)

    ADS  Google Scholar 

  32. 32.

    E.J. Judge, J.E. Barefield, J.M. Berg, S.M. Clegg, G.J. Havrilla, V.M. Montoya, L.A. Le, L.N. Lopez, Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore. Spectrochim. Acta Part B 83–84, 28–36 (2013)

    ADS  Google Scholar 

  33. 33.

    J.L. Gottfried, D.K. Smith, C.-C. Wu, M.L. Pantoya, Improving the explosive performance of aluminum nanoparticles with aluminum iodate hexahydrate (AIH). Sci. Rep. 8, 8036 (2018)

    ADS  Google Scholar 

  34. 34.

    S.A. Davari, J.L. Gottfried, C. Liu, E.L. Ribeiro, G. Duscher, D. Mukherjee, Graphitic-coated Al nanoparticles manufactured as superior energetic materials via laser ablation synthesis in organic solvents. Appl. Surf. Sci. 473, 156–163 (2019)

    ADS  Google Scholar 

  35. 35.

    E.R. Wainwright, S.W. Dean, S.V. Lakshman, T.P. Weihs, J.L. Gottfried, Evaluating compositional effects on the laser-induced combustion and shock velocities of Al/Zr-based composite fuels. Combust. Flame 213, 357–386 (2020)

    Google Scholar 

  36. 36.

    J.L. Gottfried, Laboratory-scale method for estimating explosive performance from laser-induced shock waves. Propellants Explos. Pyrotech. 40(5), 674–681 (2015)

    Google Scholar 

  37. 37.

    J.L. Gottfried, T.M. Klapötke, T.G. Witkowski, Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55 and DAAF using the laser-induced air shock from energetic materials technique. Propellants Explos. Pyrotech. 42, 353–359 (2017)

    Google Scholar 

  38. 38.

    C.-D. Park, M. Mileham, L.J. van de Burgt, E.A. Muller, A.E. Stiegman, The effects of stoichiometry and sample density on combustion dynamics and initiation energy of Al/Fe2O3 metastable interstitial composites. J. Phys. Chem. C 114(6), 2814–2820 (2010)

    Google Scholar 

  39. 39.

    R.W. Conner, D.D. Dlott, Ultrafast emission spectroscopy of exploding nanoaluminum in Teflon: observations of aluminum fluoride. Chem. Phys. Lett. 512(4–6), 211–216 (2011)

    ADS  Google Scholar 

  40. 40.

    S. Roy, N. Jiang, H.U. Stauffer, J.B. Schmidt, W.D. Kulatilaka, T.R. Meyer, C.E. Bunker, J.R. Gord, Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles. J. Appl. Phys. 113(18), 184310 (2013)

    ADS  Google Scholar 

  41. 41.

    J.L. Gottfried, S.W. Dean, E.S. Collins, C.-C. Wu, Estimating the relative energy content of reactive materials using nanosecond-pulsed laser ablation. MRS Adv. 3(17), 875–886 (2018)

    Google Scholar 

  42. 42.

    M. O’Neil, A. Demko, E.L. Petersen, W.D. Kulatilaka, Ultrashort-pulse laser-induced breakdown spectroscopy for detecting airborne metals during energetic reactions. Appl. Opt. 58(10), C79–C83 (2019)

    Google Scholar 

  43. 43.

    E.R. Wainwright, T.A. Schmauss, S. Vummidi-Lakshman, K.R. Overdeep, T.P. Weihs, Observations during Al: Zr composite particle combustion in varied gas environments. Combust. Flame 196, 487–499 (2018)

    Google Scholar 

  44. 44.

    S. Vummidi Lakshman, J.D. Gibbins, E.R. Wainwright, T.P. Weihs, The effect of chemical composition and milling conditions on composite microstructure and ignition thresholds of AlZr ball milled powders. Powder Technol. 343, 87–94 (2019)

    Google Scholar 

  45. 45.

    E.R. Wainwright, S.V. Lakshman, A.F.T. Leong, A.H. Kinsey, J.D. Gibbins, S.Q. Arlington, T. Sun, K. Fezzaa, T.C. Hufnagel, T.P. Weihs, Viewing internal bubbling and microexplosions in combusting metal particles via X-ray phase contrast imaging. Combust. Flame 199, 194–203 (2019)

    Google Scholar 

  46. 46.

    D.G. Weisz, J.C. Crowhurst, M.S. Finko, T.P. Rose, B. Koroglu, R. Trappitsch, H.B. Radousky, W.J. Siekhaus, M.R. Armstrong, B.H. Isselhardt, M. Azer, D. Curreli, Effects of plume hydrodynamics and oxidation on the composition of a condensing laser-induced plasma. J. Phys. Chem. A 122(6), 1584–1591 (2018)

    Google Scholar 

  47. 47.

    J.L. Gottfried, Laser-induced air shock from energetic materials (LASEM) method for estimating detonation performance: challenges, successes and limitations. AIP Conf. Proc. 1979(1), 100014 (2018)

    Google Scholar 

  48. 48.

    L.M. Cabalín, J.J. Laserna, Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim. Acta Part B 53(5), 723–730 (1998)

    ADS  Google Scholar 

  49. 49.

    S.-B. Wen, X. Mao, R. Greif, R.E. Russo, Laser ablation induced vapor plume expansion into a background gas: II. Experimental analysis. J. Appl. Phys. 101(2), 023115 (2007)

    ADS  Google Scholar 

  50. 50.

    E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)

    Google Scholar 

  51. 51.

    D. Sundaram, V. Yang, R.A. Yetter, Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog. Energy Combust. Sci. 61, 293–365 (2017)

    Google Scholar 

  52. 52.

    R. Thiruvengadathan, Aluminum-based nano-energetic materials: state of the art and future perspectives, in Nano-Energetic Materials, ed. by S. Bhattacharya, A.K. Agarwal, T. Rajagopalan, et al. (Springer Singapore, Singapore, 2019), pp. 9–35

    Google Scholar 

  53. 53.

    C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum. J. Appl. Phys. 73(10), 4752–4758 (1993)

    ADS  Google Scholar 

  54. 54.

    D.M. Surmick, C.G. Parigger, Aluminum monoxide emission measurements in a laser-induced plasma. Appl. Spectrosc. 68(9), 992–996 (2014)

    ADS  Google Scholar 

  55. 55.

    R.A. Yetter, G.A. Risha, S.F. Son, Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32(2), 1819–1838 (2009)

    Google Scholar 

  56. 56.

    J. Ashkenazy, R. Kipper, M. Caner, Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines. Phys. Rev. A 43(10), 5568–5574 (1991)

    ADS  Google Scholar 

  57. 57.

    H.R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974)

    Google Scholar 

  58. 58.

    A.M. El Sherbini, T.M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim. Acta Part B 60(12), 1573–1579 (2005)

    ADS  Google Scholar 

  59. 59.

    M.C. Quintero, A. Rodero, M.C. García, A. Sola, Determination of the excitation temperature in a nonthermodynamic-equilibrium high-pressure helium microwave plasma torch. Appl. Spectrosc. 51(6), 778–784 (1997)

    ADS  Google Scholar 

  60. 60.

    M.L. Najarian, R.C. Chinni, Temperature and electron density determination on laser-induced breakdown spectroscopy (LIBS) plasmas: a physical chemistry experiment. J. Chem. Educ. 90(2), 244–247 (2013)

    Google Scholar 

  61. 61.

    N.M. Shaikh, S. Hafeez, B. Rashid, S. Mahmood, M.A. Baig, Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd:YAG laser. J. Phys. D 39(20), 4377–4385 (2006)

    ADS  Google Scholar 

  62. 62.

    A.E. Kramida, Y. Ralchenko, J. Reader, N.A. Team, NIST Atomic Spectra Database (version 5.1). (National Institute of Standards and Technology, Gaithersburg, MD), https://physics.nist.gov/asd. Accessed Sept 2019.

  63. 63.

    G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim. Acta Part B 65(1), 86–95 (2010)

    ADS  Google Scholar 

  64. 64.

    W.L. Wiese, M.W. Smith, B.M. Miles, Atomic transition probabilities. Vol. 2: sodium through calcium. A critical data compilation, U.S. Department of Commerce, National Bureau of Standards (Washington, DC), Report No. NSRDS-NBS (1969)

  65. 65.

    R.C. Hilborn, Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50(11), 982–986 (1982)

    ADS  Google Scholar 

  66. 66.

    N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37(2), 143–155 (2012)

    Google Scholar 

  67. 67.

    I. Glassman, R.A. Yetter, Combustion, 4th edn. (Academic Press, New York, 2008)

    Google Scholar 

  68. 68.

    E.T. Turkdogan, P. Grieveson, L.S. Darken, Enhancement of diffusion-limited rates of vaporization of metals. J. Phys. Chem. 67(8), 1647–1654 (1963)

    Google Scholar 

Download references


This work was funded by the Defense Threat Reduction Agency under HDTRA-15-1-0006.

Author information



Corresponding authors

Correspondence to Elliot R. Wainwright or Jennifer L. Gottfried.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7845 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wainwright, E.R., Dean, S.W., De Lucia, F.C. et al. Effect of sample morphology on the spectral and spatiotemporal characteristics of laser-induced plasmas from aluminum. Appl. Phys. A 126, 83 (2020). https://doi.org/10.1007/s00339-019-3201-9

Download citation