Skip to main content
Log in

Fabrication and characterization of \(\hbox {YCa}_{2}\hbox {Cu}_{3}\hbox {O}_{7}\) superconductors using natural \((\hbox {CaCO}_{3})\) nanoparticles extracted from Sepia pharaonis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this Paper, \(\hbox {YCa}_{2}\hbox {Cu}_{3}\hbox {O}_{7}\) superconductor composites were fabricated with biocompatible carbonate calcium nanoparticles. The effect of the biocompatible nanoparticle on YBCO superconductor properties were investigated. For this purpose, planetary ball milling process used to produce \(\hbox {CaCO}_{3}\) nanoparticles from cuttlebone (Sepia pharaonis) of the Persian Gulf. Then, samples of superconductor composite with the natural carbonate calcium were fabricated. The samples were prepared by solid state reaction method with mixing, calcination and sintering process. The samples were characterized and studied using dynamic light scattering technique, Meissner effect test, XRD analysis and FESEM imaging. The critical current density (\(J_\mathrm{C}\)) and oxygen content of samples were measured by traditional four-probes method and iodometric titration method, respectively. The superconducting transition temperatures and \(J_\mathrm{C}\) were determined 90.2 K and 28.4 \(\hbox {A}/\hbox {cm}^{2}\) by four-probe method measurements, respectively. The results showed a significant enhancement of the superconducting \(J_\mathrm{C}\) due to using the natural \(\hbox {CaCO}_{3}\) nanoparticles in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Superconductivity in the Bi–Sr–Cu–O system. Z. Phys. B Condens. Matter 68(4), 421–423 (1987)

    ADS  Google Scholar 

  2. H. Murakami, S. Yaegashi, J.Y. Nishino, Y. Shiohara, S. Tanaka, Synthesis of YBa2Cu4O8 powders by sol–gel method under ambient pressure. Jpn. J. Appl. Phys. 29(3A), L445 (1990)

    ADS  Google Scholar 

  3. W.A. Little, Possibility of synthesizing an organic superconductor. Phys. Rev. 134(6A), A1416 (1964)

    ADS  Google Scholar 

  4. H. Ito, M.V. Kartsovnik, H. Ishimoto, K. Kono, H. Mori, N.D. Kushch, G. Saito, T. Ishiguro, S. Tanaka, Superconductivity in (BEDT-TTF) 2MHg (SCN) 4 (M= K, Rb, Tl, NH4). Synth. Met. 70(1–3), 899–902 (1995)

    Google Scholar 

  5. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors, vol. 88 (Springer, Berlin, 2012)

    Google Scholar 

  6. S.I.A. Sukor, M.M.A. Kechik, A.H. Shaari, C.S. Kien, H. Baqiah, Superconductors and applications. Emerg. Themes Fundam. Appl. Sci. Phys. 59 (2018)

  7. M.A. Suazlina, S.Y.S. Yusainee, H. Azhan, R. Abd-Shukor, R.M. Mustaqim, The effects of nanoparticle addition in Bi-2212 superconductors. J. Teknol. Sci. Eng. 69(2), 49–52 (2014)

    Google Scholar 

  8. M. Gürsul, A. Ekicibil, B. Özçelik, M.A. Madre, A. Sotelo, Sintering effects in Na substituted Bi-(2212) superconductor prepared by a polymer method. J. Supercond. Novel Magn. 28(7), 1913–1924 (2015)

    Google Scholar 

  9. V. Garnier, R. Caillard, A. Sotelo, G. Desgardin, Relationship among synthesis, microstructure and properties in sinter-forged Bi-2212 ceramics. Physica C Supercond. 319(3), 197–208 (1999)

    ADS  Google Scholar 

  10. R.H. Patel, A. Nabialek, M. Niewczas, Characterization of superconducting properties of BSCCO powder prepared by attrition milling. Supercond. Sci. Technol. 18(3), 317 (2005)

    ADS  Google Scholar 

  11. B.W. McConnell, M.S. Walker, S. Mehta, HTS transformers. IEEE Power Eng. Rev. 20, 7–11 (2000)

    Google Scholar 

  12. A.P. Malozemoff, J. Maguire, B. Gamble, S. Kalsi, Power applications of high temperature superconductors: status and perspectives. IEEE Trans. Appl. Supercond. 11, 778–781 (2002)

    ADS  Google Scholar 

  13. H.W. Weijers et al., The generation of 25.05 T using a 5.11 T Bi Sr CaCu O superconducting insert magnet. Supercond. Sci. Technol. 17, 636–644 (2004)

    ADS  Google Scholar 

  14. A.E. Stoyanova, L. Stoyanov, S. Terzieva, A. Stoyanova-Ivanova, M. Mladenov, D. Kovacheva, R. Raicheff, Superconducting BSCCO ceramics as additive to the zinc electrode mass in the rechargeable nickel–zinc batteries. J. Progress. Res. Chem. 2(2), 83–91 (2015)

    Google Scholar 

  15. M.M. Dihom, A.H. Shaari, H. Baqiah, N.M. Al-Hada, C.S. Kien, R.S. Azis, R. Abd-Shukor, Microstructure and superconducting properties of Ca substituted ceramics prepared by thermal treatment method. Results Phys. 7, 407–412 (2017)

    ADS  Google Scholar 

  16. G. Böttger, H. Schwer, E. Kaldis, K. Bente, Ca doping of YBa\(_2\)Cu\(_3\)O\(_7\) single crystals: structural aspects. Physica C Supercond. 275(3–4), 198–204 (1997)

    ADS  Google Scholar 

  17. C. Chen, F. Wondre, A.J.S. Chowdhury, J.W. Hodby, J.F. Ryan, Crystal growth and superconducting properties of (Y, Ca) Ba\(_2\)Cu\(_3\)O\(_7\) with BaF2 additive. Physica C Supercond. 341, 589–592 (2000)

    ADS  Google Scholar 

  18. N.M. Strickland, N.J. Long, E.F. Talantsev, P. Hoefakker, J. Xia, Enhanced flux pinning by BaZrO\(_3\) nanoparticles in metalorganic deposited YBCO second-generation HTS wire. Physica C 468, 183–189 (2008)

    ADS  Google Scholar 

  19. Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Effects of nano-ZrO\(_2\) particles on the superconductivity of Pb-doped BSCCO. Physica C 337, 130–132 (2000)

    ADS  Google Scholar 

  20. X.M. Cui, G.Q. Liu, J. Wang, Z.C. Huang, Y.T. Zhao, B.W. Tao, Y.R. Li, Enhancement of critical current density of YBa\(_2\)Cu\(_3\)O\(_7\) thin films by nanoscale CeO\(_2\) pretreatment of substrate surfaces. Physica C 466, 1–4 (2007)

    ADS  Google Scholar 

  21. S. Soltanian, J. Horvat, X.L. Wang, P. Munroe, S.X. Dou, Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Physica C 390, 185–190 (2003)

    ADS  Google Scholar 

  22. S.E.Mousavi Ghahfarokhi, Nahid Hoseenzadeh, M.Zargar Shoushtari, The effect of CdO nanoparticles on the structureand magnetic properties of Bi\(_1.64\)Pb\(_0.36\)Sr\(_2\)Ca\(_2\)xCdxCu\(_3\)Oy superconductors. J. Supercond. Novel Magn. 27(10), 2217–2223 (2014)

    Google Scholar 

  23. Takuya Tsuzuki, Kellie Pethick, Paul G. McCormick, Synthesis of CaCO\(_3\) nanoparticles by mechanochemical processing. J. Nanopart. Res. 2(4), 375–380 (2000)

    ADS  Google Scholar 

  24. A. Danmaigoro, G.T. Selvarajah, M.H.M. Noor, R. Mahmud, M. Zakaria, Z.A. Bakar, Development of cockleshell (Anadara granosa) derived CaCO\(_3\) nanoparticle for doxorubicin delivery. J. Comput. Theor. Nanosci. 14(10), 5074–5086 (2017)

    Google Scholar 

  25. T. Jayaramudu, G.M. Raghavendra, K. Varaprasad, G.V.S. Reddy, A.B. Reddy, K. Sudhakar, E.R. Sadiku, Preparation and characterization of poly (ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43027

    Article  Google Scholar 

  26. Y.I. Choi, H.J. Jung, W.G. Shin, Y. Sohn, Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities. Appl. Surf. Sci. 356, 615–625 (2015)

    ADS  Google Scholar 

  27. R. Elilarassi, G. Chandrasekaran, Influence of nickel doping on the structural, optical and magnetic properties of TiO\(_2\) diluted magnetic semiconductor nanoparticles prepared by high energy ball-milling technique. J. Mater. Sci. Mater. Electron. 28(19), 14536–14542 (2017)

    Google Scholar 

  28. D. Fan, J. Feng, J. Liu, T. Gao, Z. Ye, M. Chen, X. Lv, Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. Ceram. Int. 42(6), 7155–7163 (2016)

    Google Scholar 

  29. L. Xu, X. Chen, H. Jing, L. Wang, J. Wei, Y. Han, Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders. Mater. Sci. Eng. A 667, 87–96 (2016)

    Google Scholar 

  30. S. Behrens, I. Appel, Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 89–96 (2016)

    Google Scholar 

  31. Z. Zhang, G. Yao, X. Zhang, J. Ma, H. Lin, Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction. Ceram. Int. 41(3), 4523–4530 (2015)

    Google Scholar 

  32. P.K. Giri, K. Singh Dilip , R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, Correlating the microstructural and photoluminescence properties of ZnO nanoparticles prepared by ball milling, in International Workshop on Physics of Semiconductor Devices. IEEE 905–908 (2007)

  33. X. Jia, X. Ma, D. Wei, J. Dong, W. Qian, Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 330, 234–240 (2008)

    Google Scholar 

  34. X.P. Jia, W.P. Qian, D.J. Wu, D.W. Wei, G.-L. Xu, X.J. Liu, Cuttlebone-derived organic matrix as a scaffold for assembly of silver nanoparticles and application of the compositefilms in surface-enhanced raman scattering. Colloids Surf. B Biointerface 68, 231–237 (2009)

    Google Scholar 

  35. A. Islam, S.H. Teo, M.A. Rahman, Y.H. Taufiq-Yap, Seeded growth route to noble calcium carbonate nanocrystal. PLoS ONE 10(12), e0144805 (2015)

    Google Scholar 

  36. Kh Nurul Islam, A.B.Z. Zuki, M.E. Ali, M.Z.B. Hussein, M.M. Noordin, M.Y. Loqman, H. Wahid, M.A. Hakim, Sh B.A. Hamid, Facile synthesis of calcium carbonate nanoparticles from cockle shell. J. Nanomater. 2012(2), 1–5 (2012)

    Google Scholar 

  37. Kh Nurul Islam, A.B.Z. Zuki, M.M. Noordin, M.Z.B. Hussein, N.S.S.B.A. Rahman, M.E. Ali, Characterization of calcium carbonate and its polymorphs from cockle shells (Anadaragranosa). Power Technol. 213(1–3), 188–191 (2011)

    Google Scholar 

  38. O.S. Yildirim, Z. Okumus, M. Kizilkaya, Y. Ozdemir, R. Durak, A. Okur, Comparative quantative analysis of sodium, magnesium, potassium and calcium in healthy cuttlefish backbone and non-pathological human elbow bone. Can. J. Anal. Sci. Spectrosc. 52, 270–275 (2007)

    Google Scholar 

  39. J.H.G. Rocha, A.F. Lemos, S. Agathopoulos, P. Valerio, S. Kannan, F.N. Oktar, J.M.F. Ferreira, Scaffolds for bone restoration from cuttlefish. Bone 37, 850–857 (2005)

    Google Scholar 

  40. Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61(3), 1027–1040 (2006)

    Google Scholar 

  41. Q. Fengyu, L. Huiming, W. Xiang, L. Xiaofeng, Q. Shilun, Zh Guangshan, Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery. Solid State Sci. 12(5), 851–856 (2010)

    Google Scholar 

  42. R. Ahmadi, S. Osfouri, R. Azin, Synthesis and characterization of nanoparticles from Cuttlebone (sepia pharaonis) of Persian Gulf. Iran. South Med. J. 21(4), 287–296 (2018)

    Google Scholar 

  43. R. Ahmadi, S. Osfouri, R. Azin, Wettability alteration of carbonate oil reservoir surface using biocompatible nanoparticles. Mater. Res. Express 6(2) (2018)

    ADS  Google Scholar 

  44. M. Murakami, M. Morita, K. Doi, K. Miyamoto, A new process with the promise of high Jc in oxide superconductors. Jpn. J. Appl. Phys. 28(7R), 1189–1196 (1981)

    ADS  Google Scholar 

  45. A. Fukuoka, M. Karppinen, N. Seiji, J. Valo, A. Kareiva, L. Niinisto, M. Leskela, N. Koshizuka, H. Yamauchi, Wet chemical determination of the oxygen content in YBa\(_2\)Cu\(_4\)Oz samples synthesized by various methods. Supercond. Sci. Technol. 8(8), 673–679 (1995)

    ADS  Google Scholar 

  46. M. Karppinen, L. Niinisto, Determination of the oxygen content in the superconducting YBa\(_2\)Cu\(_7\)-delta phase. Supercond. Sci. Technol. 4(8), 334–338 (1991)

    ADS  Google Scholar 

  47. C.Daniel Harris, A.Terrell Hewston, Determination of Cu\(^{3+}\) Cu\(^{2+}\) ratio in the superconductor YBa\(_2\)Cu\(_3\)O\(_8\). J. Solid State Chem. 69(1), 182–185 (1987)

    ADS  Google Scholar 

  48. C. Suryanarayana, Mechanical alloying and milling. Mater. Sci. Progress 46, 178–184 (2001)

    Google Scholar 

  49. H.W. Song, S.R. Guo, Z.Q. Hu, A coherent polycrystal model for the inverse Hall–Petch relation in nanocrystalline materials. Nanostruct. Mater. 11(2), 203–210 (1999)

    Google Scholar 

  50. S. Abbasi, H. Eslamizadeh, H. Raanaei, Study of synthesis, structural and magnetic properties of nanostructured (Fe67 Ni33) 70 Ti10 B20 alloy. J. Magn. Magn. Mater. 451, 780–786 (2018)

    ADS  Google Scholar 

  51. M.P.C. Kalita, A. Perumal, A. Srinivasan, Structureandmagneticpropertiesof nanocrystallineFe75Si25 powders preparedbymechanicalalloying. J. Magn. Magn. Mater 320, 2780–2783 (2008)

    ADS  Google Scholar 

  52. J.M. Greneche, A. Ślawska-Waniewska, About the interfacial zone in nanocrystalline alloys. J. Magn. Magn. Mater. 215, 264–267 (2000)

    ADS  Google Scholar 

  53. Jo Bo Nelson, D.P. Riley, An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57(3), 160–168 (1945)

    ADS  Google Scholar 

  54. I. Düzgün, The investigation of the lattice strains and crystallite sizes of Y358 and Y123 high-temperature superconductors. Turk. J. Phys. 42, 378–385 (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge persian Gulf university for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahmineh Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoudeh, Z., Jalali, T. & Osfouri, S. Fabrication and characterization of \(\hbox {YCa}_{2}\hbox {Cu}_{3}\hbox {O}_{7}\) superconductors using natural \((\hbox {CaCO}_{3})\) nanoparticles extracted from Sepia pharaonis. Appl. Phys. A 126, 25 (2020). https://doi.org/10.1007/s00339-019-3196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3196-2

Navigation