Skip to main content
Log in

Design of spin-filtering devices with rectifying effects and negative differential resistance using armchair phosphorene nanoribbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, we employ density functional theory in combination with non-equilibrium Green function to investigate the spin transport properties of six types of armchair phosphorene nanoribbons (APNRs) devices, i.e., M1–M6, in which the left and right electrodes are doped with different transition metal (TM) atoms such as Fe, Co, and Ni atoms. The M1, M3, and M5 devices are obtained by substituting (Co and Ni), (Fe and Co), (Fe and Ni) atoms, respectively, with the first atom (for example, Co in M1) placed in the center of the left and the other one (for example, Ni in M1) placed in the center of right electrode. Furthermore, the M2, M4, and M6 devices are obtained by moving the substitution sites of (Co and Ni), (Fe and Co), and (Fe and Ni) near the edge of NRs, respectively. In this study, APNRs with the widths of n = 7, 8, and 9 are chosen to study the effects of various widths of APNRs on their electronic transport properties. The current–voltage characteristics, rectification ratio and spin-filtering efficiency are calculated for the assumed devices. Our findings demonstrate that M3 and M5 devices in all considered widths represent 100% spin-filtering efficiency in dual-orientation of positive and negative bias. Besides, spin-dependent rectifying behavior is observed in our assumed systems. Also, all devices reveal spin-dependent negative differential resistance. Based on the obtained results, these phenomena can be manipulated by moving the positions of TM atoms from the center to the edge of NRs or changing the width of APNRs. Overall, our research may be helpful in designing multifunctional spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 11 (2009)

    Google Scholar 

  2. S. Fotoohi, M.K. Moravvej-Farshi, R. Faez, Appl. Phys. A 116, 2057 (2014)

    ADS  Google Scholar 

  3. G. Moody, C. KavirDass, K. Hao, C.H. Chen, L.J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, X. Li, Nat. Commun. 6, 8315 (2015)

    ADS  Google Scholar 

  4. R. Ganatra, Q. Zhang, ACS Nano 8, 4074 (2014)

    Google Scholar 

  5. L. Kou, C. Chen, S.C. Smith, J. Phys. Chem. Lett. 6, 2794 (2015)

    Google Scholar 

  6. J. Dai, X.C. Zeng, RSC Adv. 4, 48017 (2014)

    Google Scholar 

  7. X. Ling, H. Wang, S. Huang, F. Xia, M. Dresselhaus, PNAS 12, 4523 (2015)

    ADS  Google Scholar 

  8. H. Asahina, K. Shindo, A. Morita, J. Phys. 51, 1193 (1982)

    Google Scholar 

  9. Q. Liu, X. Zhang, L.B. Abdalla, A. Fazzio, A. Zunger, Nano Lett. 15, 1222 (2015)

    ADS  Google Scholar 

  10. L. Kou, T. Frauenheim, C. Chen, J. Phys. Chem. Lett. 5, 2675 (2014)

    Google Scholar 

  11. M.R. Ashwin Kishore, P. Ravindran, AIP Conf. Proc. 1942, 140076 (2018)

    Google Scholar 

  12. C.K. Boraha, P.K. Tyagib, S. Kumara, K. Patela, Comput. Mater. Sci. 15, 65 (2018)

    Google Scholar 

  13. S. Das, M. Demarteau, A. Roelofs, ACS Nano 8, 11730 (2014)

    Google Scholar 

  14. Y. Du, H. Liu, Y. Deng, P.D. Ye, ACS Nano 8, 10035 (2014)

    Google Scholar 

  15. H.V. Phuc, V.V. Ilyasov, N.N. Hieu, C.V. Nguyen, Vacuum 149, 231 (2018)

    ADS  Google Scholar 

  16. P.M. Das, G. Danda, A. Cupo, W.M. Parkin, L. Liang, N. Kharche, X. Ling, S. Huang, M.S. Dresselhaus, V. Meunier, M. Drndic, ACS Nano 10, 5687 (2016)

    Google Scholar 

  17. J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, Q.J. Zhang, Sci. Rep. 4, 6452 (2014)

    ADS  Google Scholar 

  18. W. Li, G. Zhang, Y.W. Zhang, J. Phys. Chem. C. 118, 22368 (2014)

    Google Scholar 

  19. X. Peng, A. Copple, Q. Wei, J. Appl. Phys. 116, 14430 (2014)

    Google Scholar 

  20. K. Wang, H. Wang, M. Zhang, W. Zhao, Y. Liu, H. Qin, Nanomaterials 9, 311 (2019)

    Google Scholar 

  21. N. Suvansinpan, F. Hussain, G. Zhang, C.H. Chiu, Y. Cai, Y.W. Zhang, Nanotechnology 27, 6 (2016)

    Google Scholar 

  22. H.P. Zhang, W. Hu, A. Du, X. Lu, Y.P. Zhang, J. Zhou, X. Lin, Y. Tang, Appl. Surf. Sci. 433, 249 (2018)

    ADS  Google Scholar 

  23. A. Hashmi, J. Hong, J. Phys. Chem. C. 119, 9198 (2015)

    Google Scholar 

  24. J. Hong, M. Farooq, Sci. Rep. 5, 12482 (2015)

    ADS  Google Scholar 

  25. Z. Teymoori, S. Fotoohi, M. Pashangpour, Physica E. 105, 147 (2019)

    ADS  Google Scholar 

  26. J.H. Garcia, M. Vila, A.W. Cummings, S. Roche, Chem. Soc. Rev. 47, 3359 (2018)

    Google Scholar 

  27. Y.G. Semenov, K.W. Kim, J.M. Zavada, Appl. Phys. Lett. 91, 153105 (2007)

    ADS  Google Scholar 

  28. J. Zeng, K.Q. Chen, J. He, X.J. Zhang, C.Q. Sun, J. Phys. Chem. C. 115, 25076 (2011)

    Google Scholar 

  29. L.H. Wang, Z.Z. Zhang, J.G. Zhao, B.J. Ding, Y. Guo, C. Jin, Phys. Lett. A 379, 2860 (2015)

    ADS  Google Scholar 

  30. P. Zhao, Q.H. Wu, D.S. Liu, G. Chen, J. Chem. Phys. 140, 044311 (2014)

    ADS  Google Scholar 

  31. G.P. Tang, Z.H. Zhang, X.Q. Deng, Z.Q. Fana, H.L. Zhua, Phys. Chem. Chem. Phys. 17, 638 (2015)

    Google Scholar 

  32. J. Kumar, H.B. Nemade, P.K. Giri, Phys. Chem. Chem. Phys. 19, 29685 (2017)

    Google Scholar 

  33. M. Rahman, K.C. Zhou, Ql Xia, Y.Z. Nie, G.H. Guo, Phys. Chem. Chem. Phys. 19, 25319 (2017)

    Google Scholar 

  34. M.M. Dong, Z.Q. Wang, G.P. Zhang, C.K. Wang, X.X. Fu, Phys. Chem. Chem. Phys. 21, 4879 (2019)

    Google Scholar 

  35. P. Srivastava, K.P.S.S. Hembram, H. Mizuseki, K.R. Lee, S.S. Han, S. Kim, J. Phys. Chem. C 119, 6530 (2015)

    Google Scholar 

  36. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Nano Lett. 121, 141 (2012)

    ADS  Google Scholar 

  37. Z. He, K. He, A.W. Robertson, A.I. Kirkland, D. Kim, J. Ihm, E. Yoon, G.D. Lee, J.H. Warner, Nano Lett. 14, 3766 (2014)

    ADS  Google Scholar 

  38. Z. Nourbakhsh, R. Asgari, Phys. Rev. B 97, 235406 (2018)

    ADS  Google Scholar 

  39. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  40. N. Troullier, J.L. Martins, Phys. Rev. B. 43, 1993 (1991)

    ADS  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  42. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B. 31, 6207 (1985)

    ADS  Google Scholar 

  43. D. Zhang, M. Long, X. Zhang, L. Cui, X. Li, H. Xu, J. Appl. Phys. 121, 093903 (2017)

    ADS  Google Scholar 

  44. Q. Wu, L. Shen, M. Yang, Y. Cai, Z. Huang, Y.P. Feng, Phys. Rev. B 92, 035436 (2015)

    ADS  Google Scholar 

  45. P. Yuan, Y. Zheng, B. Bian, B. Liao, Appl. Phys. A 122, 863 (2016)

    ADS  Google Scholar 

  46. Y. Zhou, J. Zhang, D. Zhang, C. Ye, X. Miao, J. Appl. Phys. 115, 013705 (2014)

    ADS  Google Scholar 

  47. T. Chen, X.F. Li, L.L. Wang, K.W. Luo, L. Xu, J. Appl. Phys. 116, 013702 (2014)

    ADS  Google Scholar 

  48. A. Pramanik, S. Sarkar, P. Sarkar, J. Phys. Chem. C 116, 18064–18069 (2012)

    Google Scholar 

  49. M. Nazirfakhr, A. Shahhoseini, Phys. Lett. A 382, 704–709 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Fotoohi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotoohi, S. Design of spin-filtering devices with rectifying effects and negative differential resistance using armchair phosphorene nanoribbon. Appl. Phys. A 125, 880 (2019). https://doi.org/10.1007/s00339-019-3171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3171-y

Navigation