Skip to main content
Log in

Prospect of silver nanowire (AgNW) in development of simple and cost-effective vertical organic light-emitting transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite a great potential for low-voltage display applications, vertical organic light-emitting transistors (VOLETs) suffer serious issues of high-cost and complex fabrication techniques, notably for the intermediate electrode. To address this problem, this study demonstrates a cost-effective and simple approach to fabricate a VOLET device by utilising spin-coated silver nanowires (AgNWs) as an intermediate electrode. AgNWs exhibit high electrical conductivity, high porosity and high optical transparency, which qualify them as a perfect candidate for the intermediate electrode in VOLETs. To show the potential of AgNWs in VOLET devices using a facile, cost-effective spin-coated method, two types of VOLETs, namely, the Schottky barrier (SB) VOLET and static induction transistor (SIT) VOLET, were fabricated and analysed. Interestingly, both the devices show transistor behaviour when the Vg is varied, implying a fully functional VOLET device. We believe that this is one of the simplest methods to fabricate VOLETs without compromising the device characteristics demonstrated to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F Cicoira C Santato 2007 Adv. Funct. Mater. 17 3421

    Article  Google Scholar 

  2. Z Xu S-H Li L Ma G Li Y Yang 2007 Appl. Phys. Lett. 91 92911

    Article  Google Scholar 

  3. H Yu Z Dong J Guo D Kim F So 2016 ACS Appl. Mater. Interfaces 8 10430

    Article  Google Scholar 

  4. S Yang W Du J Qi Z Lou 2009 J. Lumin. 129 1973

    Article  Google Scholar 

  5. S.-Y. Yang, W.-S. Du, J.-R. Qi, Z.-D. Lou, Wuli Xuebao/Acta Phys. Sin. 58, 3427 (2009)

    Google Scholar 

  6. B Liu MA McCarthy Y Yoon DY Kim Z Wu F So PH Holloway JR Reynolds J Guo AG Rinzler 2008 Adv. Mater. 20 3605

    Article  Google Scholar 

  7. X. Yang, D. Du, Y. Wang, Y. Zhao 2018 Micromachines 10. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059622660&doi=10.3390%2fmi10010022&partnerID=40&md5=3a19c28f08ea09bc944452b1e29bac90

  8. J Kwon YD Suh J Lee P Lee S Han S Hong J Yeo H Lee SH Ko 2018 J. Mater. Chem. C 6 7445

    Article  Google Scholar 

  9. X Yu X Yu J Zhang L Chen Y Long D Zhang 2017 Nano Res. 10 3706

    Article  Google Scholar 

  10. J Hwang H-S Kim JW Roh 2018 Int. J. Nanotechnol. 15 630

    Article  ADS  Google Scholar 

  11. P. Maisch, K.C. Tam, L. Lucera, H.J. Egelhaaf, H. Scheiber, E. Maier, C.J. Brabec, Org. Electron. Phys. Mater. Appl. 38, 139 (2016)

  12. P. Maisch, K.C. Tam, L. Lucera, F.W. Fecher, H.J. Egelhaaf, H. Scheiber, E. Maier, C.J. Brabec Inkjet printing of semitransparent electrodes for photovoltaic applications, in Proceedings of SPIE—The International Society for Optical Engineering (2016). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006968409&doi=10.1117%2f12.2236968&partnerID=40&md5=1253e6d74a9c5f29f8d35be0af8b4367

  13. A. Falco, M. Petrelli, E. Bezzeccheri, A. Abdelhalim, P. Lugli, Org. Electron. Phys. Mater. Appl. 39, 340 (2016)

  14. J-Y Lee D Shin J Park 2016 Thin Solid Films 608 34

    Article  ADS  Google Scholar 

  15. J-H Choe A-Y Jang J-H Kim C-H Chung K-H Hong 2017 J. Korean Inst. Met. Mater. 55 509

    Article  Google Scholar 

  16. YH Wang X Yang DX Du XF Zhang 2019 J. Mater. Sci. Mater. Electron. 30 13238

    Article  Google Scholar 

  17. D Kumar V Stoichkov E Brousseau GC Smith J Kettle 2019 Nanoscale 11 5760

    Article  Google Scholar 

  18. WW He XH Yan YM Liang YF Long C Pan JL Zhao L Chen W Xiong QX Liu 2018 RSC Adv. 8 12146

    Article  Google Scholar 

  19. M.A. Mohd Sarjidan, A. Shuhaimi, W.H.A.H.A. Majid, Curr. Appl. Phys. 18, 1415 (2018)

  20. F Wu Z Li F Ye X Zhao T Zhang X Yang 2016 J. Mater. Chem. C 4 11074

    Article  Google Scholar 

  21. H. Zhang, Y. Chen, S. Ding, J. Wang, W. Bao, D.W. Zhang, P. Zhou 2018 Nanotechnology 29. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045620923&doi=10.1088%2f1361-6528%2faab9e6&partnerID=40&md5=03ad41f09d3e6f32d26efeafea359504

  22. J Jo MG Kim H Lee H Choi C Shin IEEE Trans 2017 Electron Devices 64 4974

    Article  ADS  Google Scholar 

  23. A. Rusu, A. Saeidi, A.M. Ionescu 2016 Nanotechnology 27. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959018370&doi=10.1088%2f0957-4484%2f27%2f11%2f115201&partnerID=40&md5=8e303f6df7b278513895338596f051a3

  24. M.A. Mohd Sarjidan, A. Shuhaimi, W.H. Abd. Majid, J. Nanosci. Nanotechnol. 19, 6995 (2019)

  25. K Kudo 2005 Curr. Appl. Phys. 5 337

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Malaysia Ministry of Education (MOE) under LRGS (Wide Band Gap Semiconductor), Project No.: LR001A-2016. The authors also would like to thank to Dr. Azrina Talik Sisin for her valuable and great scientific insights in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Mohd Sarjidan or W. H. Abd. Majid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Sarjidan, M.A., Abd. Majid, W.H. Prospect of silver nanowire (AgNW) in development of simple and cost-effective vertical organic light-emitting transistors. Appl. Phys. A 125, 871 (2019). https://doi.org/10.1007/s00339-019-3162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3162-z

Navigation