Skip to main content
Log in

Surface modification of silicon solar cell using TiO2 and Ta2O5: fabrication and characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the fabrication and characterization of surface modified silicon solar cells with the deposition of amorphous tantalum oxide (Ta2O5) and crystalline titanium oxide (TiO2) nanolayers of thickness 54.9 nm and 69.82 nm, respectively, as antireflection coating (ARC) using RF-sputtering technique. The thickness of the films measured by variable angle spectroscopic ellipsometry and scanning electron microscopy is in close agreement. The transmittance measurement as a function of wavelength of incident light showed that the thin-films deposited have lowest effective reflectance in the wavelength range of 380 nm–570 nm indicating reduced light reflection and enhanced light trapping as observed from UV–Vis measurements. Illuminated current–voltage measurements showed an increase in the short circuit current density (Jsc) and an increase of 1.54% in the efficiency of the antireflection-coated cells. Results of the External Quantum Efficiency measurement as a function of wavelength for the solar cells with ARC is also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Jhaveri, S. Avasthi, G. Man, W.E. McClain, K. Nagamatsu, A. Kahn, J. Schwartz, and J.C. Sturmn. In: Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 3292–3296 (2013) https://doi.org/10.1109/pvsc.2013.6745154

  2. W. Ho, J. Liao, Z. Hou, C. Yeh, R.S. Sue, Comput. Mater. Sci. 117, 596–601 (2016)

    Article  Google Scholar 

  3. F. Rubio, J. Denis, J.M. Albella, Thin Solid Films 90(4), 405–408 (1982)

    Article  ADS  Google Scholar 

  4. A.G. Revesz, J.F. Allison, J.H. Reynolds, COMSAT Tech. Rev. 6, 889–894 (1976)

    Google Scholar 

  5. A.G. Aberle, Sol. Energy Mater. Sol. Cells. 65, 239–248 (2001)

    Article  Google Scholar 

  6. C. Leguijt, P. Lolgen, J.A. Eikelboom, A.W. Weeber, F.M. Schuurmans, W.C. Sinke, P.F.A. Alkemade, P.M. Sarro, C.H.M. Maree, L.A. Verhoef, Sol. Energy Mater. Sol. Cells. 40, 297–345 (1996)

    Article  Google Scholar 

  7. Z. Chen, A. Rohatgi, R.O. Bell, J.P. Kalejs, Appl. Phys. Lett. 65, 2078–2080 (1994)

    Article  ADS  Google Scholar 

  8. J. Hong, W.M.M. Kessels, W.J. Soppe, A.W. Weeber, W.M. Arnoldbik, M.C.M. Sanden, J. Vac. Sci. Technol. B 21, 2123–2132 (2003)

    Article  Google Scholar 

  9. S.Y. Lien, D.S. Wuu, W.C. Yeh, J.C. Liu, Sol. Energ. Mat. Sol. Cells. 90(16), 2710 (2006)

    Article  Google Scholar 

  10. J.F. Lelievre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, M. Lemiti, Sol. Energy Mater. Sol. Cells 93, 1281–1289 (2009)

    Article  Google Scholar 

  11. J. Schmidt, M. Kerr, Sol. Energy Mater. Sol. Cells 65, 585–591 (2001)

    Article  Google Scholar 

  12. D.C. Wong, A. Waugh, Mater. Res. Symp. Proc. 426, 503–511 (1996)

    Article  Google Scholar 

  13. Yuang-Tung Cheng, Jyh-Jier Ho, Song-Yeu Tsai, Sol. Energy 85, 87–94 (2011)

    Article  ADS  Google Scholar 

  14. K. Ali, S.A. Khan, M.Z. Mat Jafri, Int. J. Electrochem. Sci. 9, 7865–7874 (2014)

    Google Scholar 

  15. P. Aurang, O. Demircioglu, F. Es, R. Turan, H.E. Unalan, J. Am. Ceram. Soc. 96(4), 1253–1257 (2013)

    Article  Google Scholar 

  16. F.N. Habib, A.R. Ismail, A.K. Mishjil, I. Khaleel, Hassoon. Silicon 11(1), 6–16 (2019)

    Google Scholar 

  17. S. Saravanan, R.S. Dubey, S. Kalainathan, M.A. More, D.K. Gautam, AIP Adv. 5, 057160 (2015)

    Article  ADS  Google Scholar 

  18. C. Zhou, J. Zhu, S.E. Foss, H. Haug, O. Nordseth, E.S. Marstein, W. Wang, Energy Proc. 77, 434–439 (2015)

    Article  Google Scholar 

  19. H. Abdulla, A. Lennie, I. Ahmad, J. Appl. Sci. 9(6), 1180–1184 (2009)

    Article  Google Scholar 

  20. K.C. Camargo, A.F. Michels, F.S. Rodembusch, M.F. Kuhn, F. Horowitz, Opt. Mater. Express 2(7), 970–977 (2012)

    Article  ADS  Google Scholar 

  21. U. Gangopadhyay, S. Jana, S. Das, P. Ghosh, A. Mondal, J. Renew. Sustain. Energy 5(031607), 1–8 (2013)

    Google Scholar 

  22. S. Craig, G.L. Harding, J. Vac. Sci. Technol. 19, 205 (1981)

    Article  ADS  Google Scholar 

  23. S. Goto, Y. Adachi, K. Matsuda, M. Nose, Arch. Metall. Mater. 60(2), 965–967 (2015)

    Article  Google Scholar 

  24. D. Hocine, M.S. Belkaid, M. Pasquinelli, L. Escoubas, J.J. Simon, G.A. Riviere, A. Moussi, Mater. Sci. Semicond. Process. 16, 113–117 (2013)

    Article  Google Scholar 

  25. I. Perez, J.L.E. Carrejo, V. Sosa, F.G. Perera, J.R.F. Mancillas, J.T.E. Galindo, C.I.R. Rodrıguez, Cond-mat. Supr-con. 1–8 (2017)

  26. B.R. Sahu, L. Kleinman, Phys. Rev. B 69, 165202 (2004)

    Article  ADS  Google Scholar 

  27. J.-H. Kim, S. Lee, Im. H-S Appl. Surf. Sci. 151, 6–16 (1999)

    Article  ADS  Google Scholar 

  28. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Sci. Rep. 6, 32355 (2016)

    Article  ADS  Google Scholar 

  29. A. Regoutz, I. Gupta, A. Serb, A. Khiat, F. Borgatti, T.-L. Lee, C. Schlueter, P. Torelli, B. Gobaut, M. Light, D. Carta, S. Pearce, Giancarlo Panaccione, Themistoklis and Prodromakis. Adv. Funct. Mater. 26, 507–513 (2016)

    Article  Google Scholar 

  30. Robin Simpson, Richard G. White, John F. Watts, Mark A. Baker, Appl. Surf. Sci. 405, 79–87 (2017)

    Article  ADS  Google Scholar 

  31. S.V.J. Chandra, P.S. Reddy, G.M. Rao, S. Uthanna, Res. Lett. Mater. Sci 95307, 1–5 (2007)

    Article  Google Scholar 

  32. http://pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency. Accessed 22 Feb 2019

  33. F. Liu, F. Zeng, N. Song, L. Jiang, Z. Han, Z. Su, C. Yan, X. Wen, X. Hao, Y.K. Liu, ACS Appl. Mater. Interfaces 7, 14376–14383 (2015)

    Article  Google Scholar 

  34. N. Mbengue, M. Diagne, F. Dia, M. Niane, A. Dieye, W. Diallo, O.A. Niasse, B. Ba, Int. J. Eng. Res. 5–4, 226–230 (2016)

    Google Scholar 

Download references

Acknowledgment

Author (RS) gratefully acknowledges Vision Group of Science and Technology (VGST), Dept. of IT, BT and S&T, Govt. of Karnataka, India for the project grant of CESEM, vide GDR No.221 dated 24-02-2014 for the Dept of Physics, MITE Moodbidri. This research was performed using facilities at CeNSE, Indian Institute of Science (IISc), Bengaluru, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India. Acknowledgment is also to Mr. Rajesh Chouta, Chairman, Mangalore Institute of Technology & Engineering, Moodbidri, for extending the research facility and coordinating the laboratory visits to accomplish research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Rao, A. Surface modification of silicon solar cell using TiO2 and Ta2O5: fabrication and characterization. Appl. Phys. A 125, 859 (2019). https://doi.org/10.1007/s00339-019-3161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3161-0

Navigation