Skip to main content
Log in

Dispersion of multiferroic BiFeO3 nanoparticles in nematic liquid crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dispersion of ferroelectric- and ferromagnetic nanoparticles in liquid crystals (LCs) is investigated in the last decades. Recently, doping multiferroic-BiFeO3 nanoparticles in the LCs has become of interest. These nanoparticles have coupled ferroelectric- and ferromagnetic properties at ambient temperature. In the present experiments, a nematic LC was doped with a low concentration of BiFeO3 nanoparticles, synthesized using a modified Pechini method. The particles were characterized and their dispersions in heptane with an added surfactant were used for doping of the LC. The measured dielectric constants in the doped LCs varied as compared to the pure LC. It was shown that the presence of a magnetic field in the cooling process (cooling down from isotropic to anisotropic phase) of the LC cells leads to a significant increase of dielectric anisotropy. Also, the transition temperature decreased in the nematic-isotropic transition temperature for the doped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Janossy, Phys. Rev. E 49, 2957 (1994)

    ADS  Google Scholar 

  2. I. Janossy, A.D. Lloyd, Mol. Cryst. Liq. Cryst. 203, 77 (1991)

    Google Scholar 

  3. H. Kamei, Y. Katayama, T. Ozawa, Japan. J. Appl. Phys 11, 1385 (1972)

    Google Scholar 

  4. L. Jiao, D.R. Evans, A. Lorenz, Opt. Data Process. Storage 4, 8 (2018)

    Google Scholar 

  5. J.B. Poursamad, A.K. Aleksanyan, R.S. Hakobyan, J. Appl. Phys. 108, 123113 (2010)

    ADS  Google Scholar 

  6. J.B. Poursamad, R.S. Hakobyan, Phys. Lett. A 372, 4647 (2008)

    ADS  Google Scholar 

  7. W. Urbach, F. Rondelez, P. Pieranski, F. Rothen, J. de Phys. 38, 1275 (1977)

    Google Scholar 

  8. J.B. Poursamad, F.B. Jahanbakhsh, M. Asadpour, A. Phirouznia, J. Mol. Liq. 186, 23 (2013)

    Google Scholar 

  9. J.B. Poursamad, F.B. Jahanbakhsh, M. Aas, K.M. Aghdami, M. Sahraei, R.S. Hakopyan, Mol. Cryst. Liq. Cryst. 560, 57 (2012)

    Google Scholar 

  10. J.P.F. Lagerwall, G. Scalia (eds.), Liquid Crystals with Nano and Microparticles (World Scientific Publishing Co. Pte. Ltd., Singapore, 2015)

    Google Scholar 

  11. Y.L. Raikher, S.V. Burylov, J. Mag. Mag. Matt. 85, 74 (1990)

    ADS  Google Scholar 

  12. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, V. Reshetnyak, Appl. Phys. Lett. 82, 1917 (2003)

    ADS  Google Scholar 

  13. I. Potocova, M. Koneracka, P. Kopcansky, M. Timko, L. Tomco, J. Jadzyn, G. Czechowski, J. Magn. Magn. Mater. 201, 163 (1999)

    ADS  Google Scholar 

  14. F. Brochard, P.G. De Gennes, J. de Phys. 31(7), 691 (1970)

    Google Scholar 

  15. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals (Taylor & Francis, London, 2005)

    Google Scholar 

  16. R. Basu, Phys. Rev. E 89, 022508 (2014)

    ADS  Google Scholar 

  17. J.F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.F. Henninot, M. Warenghem, J. Appl. Phys. 107, 074102 (2010)

    ADS  Google Scholar 

  18. F. Li, O. Buchnev, C. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T.J. Sluckin, J.L. West, Phys. Rev. Lett. 97, 147801 (2006)

    ADS  Google Scholar 

  19. N. Podoliak, O. Buchnev, O. Buluy, G.D. Alessandro, M. Kaczmarek, Soft Matter 7, 4742 (2011)

    ADS  Google Scholar 

  20. L.M. Lopatina, J.V. Selinger, Phy. Rev. Lett. 102, 197802 (2009)

    ADS  Google Scholar 

  21. L.M. Lopatina, J.V. Selinger, Phys. Rev. E 84, 041703 (2011)

    ADS  Google Scholar 

  22. V. Reshetnyak, Mol. Cryst. Liq. Cryst. 421, 219 (2004)

    Google Scholar 

  23. V.Y. Reshetnyak, S.M. Shelestiuk, T.J. Sluckin, Mol. Cryst. Liq. Cryst. 454, 201 (2006)

    Google Scholar 

  24. J.B. Poursamad, T. Hallaji, Phys. B 504, 112 (2017)

    ADS  Google Scholar 

  25. N. Podoliak, O. Buchnev, M. Herrington, E. Mavrona, M. Kaczmarek, A.G. Kanaras, E. Stratakis, J.F. Blach, J.F. Henninot, M. Warenghem, RSC Adv. 4, 46068 (2014)

    Google Scholar 

  26. M. Emdadi, J.B. Poursamad, M. Sahrai, F. Moghaddas, Mol. Phys. 116, 1650 (2018)

    ADS  Google Scholar 

  27. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    ADS  Google Scholar 

  28. J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Philos. Trans. R. Soc. 369, 3069 (2011)

    ADS  Google Scholar 

  29. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    ADS  Google Scholar 

  30. Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2, 61 (2010)

    Google Scholar 

  31. P. Fischer, M. Polomska, I. Sosnowska, M.J. Szymanski, Phys. C 13, 1931 (1980)

    Google Scholar 

  32. M. Tokunaga, M. Akaki, T. Ito, S. Miyahara, A. Miyake, H. Kuwahara, N. Furukawa, Nat. Commun. 6, 5878 (2015)

    ADS  Google Scholar 

  33. V.A. Reddy, N.P. Pathak, R. Nath, Thin Solid Films 527, 358 (2013)

    ADS  Google Scholar 

  34. T. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    ADS  Google Scholar 

  35. S.M. Selbach, T. Tybell, M. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007)

    Google Scholar 

  36. P. Nayek, G. Li, Sci. Rep. 5, 10845 (2015)

    ADS  Google Scholar 

  37. M. Emdadi, J.B. Poursamad, M. Sahrai, F. Moghadas, Brazilian. J. Phys. 48, 433 (2018)

    Google Scholar 

  38. S. Orlandi, E. Benini, I. Miglioli, D. Evans, V. Reshetnyak, C. Zannoni, Phys. Chem. Chem. Phys. 18, 2428 (2016)

    Google Scholar 

  39. A. Lorenz, M. kooijman, N. Zimmermann, H. Kitzerow, D.R. Evans, S. Kumar, Phys. Rev. E 88, 062505 (2013)

    ADS  Google Scholar 

  40. A. Lorenz, N. Zimmermann, S. Kumar, D.R. Evans, G. Cook, M. Ferna, H. Kitzerow, J. Phys. Chem. B 117, 937 (2013)

    Google Scholar 

  41. A. Lorenz, N. Zimmermann, S. Kumar, D.R. Evans, G. Cook, M.F. Martínez, H.S. Kitzerow, Appl. Opt. 52, E1 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Kassel and the Macromolecular Chemistry and Molecular Materials group for helpful discussions and the permission to use their facilities. We would like to thank Dr. Ivo de Sena Oliveira (University of Kassel) for the SEM images. We also would like to thank Nicolai Hoinka (University of Kassel) for the DSC measurement.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was proposed by JBP. The nanoparticles were synthesized and characterised by FJ and MD. The experiments were performed by FJ. JBP, MHMA, AL and HK consulted and checked the results during the experiments. The manuscript was prepared by all of the authors.

Corresponding author

Correspondence to J. B. Poursamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbakhsh, F., Poursamad, J.B., Ara, M.H.M. et al. Dispersion of multiferroic BiFeO3 nanoparticles in nematic liquid crystals. Appl. Phys. A 125, 877 (2019). https://doi.org/10.1007/s00339-019-3153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3153-0

Navigation