Skip to main content
Log in

La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the recent years, exploring new materials with the photocatalytic functions is a hot research subject, but most of the photocatalysts need an excitation source during the photocatalytic process. In this work, we report the double-perovskite La2MgTiO6:Eu2+ phosphor having the purple-blue afterglow luminescence. Our PL results show that the samples upon excitation at the UV light can show a broad Eu2+ band with the maximum emission intensity at 387 nm. The afterglow range is found to match with the UV absorption region of the TiO2. As a result, we design the UV converted Eu2+ afterglow composite by serving the La2MgTiO6:Eu2+ phosphor as a ceramic substrate to immobilize the TiO2. The photocatalytic experiments reveal the afterglow behavior of La2MgTiO6:Eu2+ phosphor can continuously provide the UV photons to the TiO2 absorption, leading to a continuous-photocatalytic methyl orange degradation in the absence of UV irradiation. Together with the photocatalytic process under the UV irradiation and after removal off the excitation source, a maximum photocatalytic time of 3.5 h is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  Google Scholar 

  2. J.-M. Herrmann, C. Duchamp, M. Karkmaz, B.T. Hoai, H. Lachheb, E. Puzenat, C. Guillard, Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 14, 624–629 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.095

    Article  Google Scholar 

  3. A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J. Mol. Catal. A Chem. 328, 8–26 (2010). https://doi.org/10.1016/j.molcata.2010.05.023

    Article  Google Scholar 

  4. W.L. da Silva, M.Z. Lansarin, P.R. Livotto, J.H.Z. dos Santos, Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue. Powder Technol. 279, 166–172 (2015). https://doi.org/10.1016/j.powtec.2015.03.045

    Article  Google Scholar 

  5. V. Nogueira, I. Lopes, T. Rocha-Santos, F. Gonçalves, R. Pereira, Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents. Environ. Technol. 39, 1586–1596 (2018). https://doi.org/10.1080/09593330.2017.1334093

    Article  Google Scholar 

  6. Y.Y. Yang, L. Kang, H. Li, Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping. Ceram. Int. 45, 8017–8022 (2019). https://doi.org/10.1016/j.ceramint.2018.12.150

    Article  Google Scholar 

  7. H. Li, L. Luo, P. Kunal, C.S. Bonifacio, Z.Y. Duan, J.C. Yang, S.M. Humphrey, R.M. Crooks, G. Henkelman, Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J. Phys. Chem. C 122, 2712–2716 (2018). https://doi.org/10.1021/acs.jpcc.7b10974

    Article  Google Scholar 

  8. W. Chen, L. Chang, S.-B. Ren, Z.-C. He, G.-B. Huang, X.-H. Liu, Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J. Hazard. Mater. 384, 121308 (2020). https://doi.org/10.1016/j.jhazmat.2019.121308

    Article  Google Scholar 

  9. L. Kang, H.L. Du, X. Du, H.T. Wang, W.L. Ma, M.L. Wang, F.B. Zhang, Study on dye wastewater treatment of tunable conductivity solid-waste-based composite cementitious material catalyst. Desalin. Water Treat. 125, 296–301 (2018). https://doi.org/10.5004/dwt.2018.22910

    Article  Google Scholar 

  10. T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40, 4346–4352 (2006). https://doi.org/10.1021/es060589n

    Article  ADS  Google Scholar 

  11. P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40, 1276–1286 (2006)

    Article  Google Scholar 

  12. P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, C. Gaysse, Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today 63, 363–369 (2000)

    Article  Google Scholar 

  13. J. Zhu, J. Luo, Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech. 229, 1703–1719 (2018). https://doi.org/10.1007/s00707-017-2060-8

    Article  MathSciNet  Google Scholar 

  14. S. Jiang, M.J. Lian, C.W. Lu, S.L. Ruan, Z. Wang, B.Y. Chen, SVM-DS fusion based soft fault detection and diagnosis in solar water heaters. Energy Explor. Exploitat. 37, 1125–1146 (2019). https://doi.org/10.1177/0144598718816604

    Article  Google Scholar 

  15. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448

    Article  ADS  Google Scholar 

  16. L. Suljo, C. Phillip, B.I. David, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151

    Article  Google Scholar 

  17. L. Kang, L. Zhao, S. Yao, C.X. Duan, A new architecture of super-hydrophilic β-SiAlON/graphene oxide ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion. Ceram. Int. 45, 16717–16721 (2019). https://doi.org/10.1016/j.ceramint.2019.05.195

    Article  Google Scholar 

  18. M. Nolan, Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. Chem. Commun. 47, 8617–8619 (2011). https://doi.org/10.1039/C1CC13243A

    Article  Google Scholar 

  19. M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, T. Onishi, Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides. J. Phys. Chem. 90, 1633–1636 (1986). https://doi.org/10.1021/j100399a036

    Article  Google Scholar 

  20. L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 140–141, 559–587 (2013). https://doi.org/10.1016/j.apcatb.2013.04.035

    Article  Google Scholar 

  21. H.C. Sun, H.Y. Wu, Y.H. Jin, Y. Lv, G.F. Ju, L. Chen, Z.Y. Feng, Y.H. Hu, Photocatalytic titanium dioxide immobilized on an ultraviolet emitting ceramic substrate for water purification. Mater. Lett. 240, 100–102 (2019). https://doi.org/10.1016/j.matlet.2018.12.135

    Article  Google Scholar 

  22. L. Zhao, L. Kang, S. Yao, Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2019). https://doi.org/10.1109/ACCESS.2018.2886095

    Article  Google Scholar 

  23. J. Su, Z.-G. Sheng, L.-B. Xie, G. Li, A.X. Liu, Fast splitting based tag identification algorithm for anti-collision in UHF RFID system. IEEE Trans. Commun. 67, 2527–2538 (2019). https://doi.org/10.1109/TCOMM.2018.2884001

    Article  Google Scholar 

  24. J. Su, Z.-G. Sheng, V.C.M. Leung, Y.-R. Chen, Energy efficient tag identification algorithms for RFID: survey, motivation and new design. IEEE Wirel. Commun. 26, 118–124 (2019). https://doi.org/10.1109/MWC.2019.1800249

    Article  Google Scholar 

  25. S.K. Guo, R. Chen, H. Li, T.L. Zhang, Y.Q. Liu, Identify severity bug report with distribution imbalance by CR-SMOTE and ELM. Int. J. Softw. Eng. Knowl. Eng. 29, 139–175 (2019). https://doi.org/10.1142/S0218194019500074

    Article  Google Scholar 

  26. S.K. Guo, R. Chen, M.M. Wei, H. Li, Y.Q. Liu, ensemble data reduction techniques and multi-RSMOTE via fuzzy integral for bug report classification. IEEE Access 6, 45934–45950 (2018). https://doi.org/10.1109/ACCESS.2018.2865780

    Article  Google Scholar 

  27. H. Li, G.F. Gao, R. Chen, X. Ge, S.K. Guo, L.-Y. Hao, The influence ranking for testers in bug tracking systems. Int. J. Softw. Eng. Knowl. Eng. 29, 93–113 (2019). https://doi.org/10.1142/S0218194019500050

    Article  Google Scholar 

  28. D. Yuan, M. Sun, S. Tang, Y. Zhang, Z. Wang, J. Qi, Y. Rao, Q. Zhang, All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.09.051

    Article  Google Scholar 

  29. J. Zhao, Y. Jing, J. Zhang, Y. Sun, Y. Wang, H. Wang, X. Bi, Aged refuse enhances anaerobic fermentation of food waste to produce short-chain fatty acids. Bioresour. Technol. 289, 121547 (2019). https://doi.org/10.1016/j.biortech.2019.121547

    Article  Google Scholar 

  30. J.B. Lian, Y. Liang, F.L. Kwong, Z.M. Ding, D.H.L. Ng, Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties. Mater. Lett. 66, 318–320 (2012). https://doi.org/10.1016/j.matlet.2011.09.007

    Article  Google Scholar 

  31. W. Wang, Z.F. Mu, S.A. Zhang, Q.P. Du, Y. Qian, D.Y. Zhu, F.G. Wu, Bi3+ and Sm3+ co-doped La2MgGeO6: a novel color-temperature indicator based on different heat quenching behavior from different luminescent centers. J. Lumin. 206, 462–468 (2019). https://doi.org/10.1016/j.jlumin.2018.10.112

    Article  Google Scholar 

  32. J. Zhao, M. Xin, J. Zhang, Y. Sun, S. Luo, H. Wang, Y. Wang, X. Bi, Diclofenac inhibited the biological phosphorus removal: Performance and mechanism. Chemosphere. 243, 125380 (2019). https://doi.org/10.1016/j.chemosphere.2019.125380

    Article  Google Scholar 

  33. H.L. Du, C.Y. Ma, W.X. Ma, H.T. Wang, Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process. Process. Appl. Ceram. 12, 303–312 (2018). https://doi.org/10.2298/pac1804303d

    Article  Google Scholar 

  34. H. Chen, Sh Zhang, Z. Zhao, M. Liu, Q. Zhang, Application of dopamine functional materials in water pollution control. Process in Chemistry 31, 571–579 (2019). https://doi.org/10.7536/PC180823

    Article  ADS  Google Scholar 

  35. Z.F. Mu, Y.H. Hu, Y.H. Wang, H.Y. Wu, C.J. Fu, F.W. Kang, The structure and luminescence properties of long afterglow phosphor Y3– xMnxAl5– xSixO12. J. Lumin. 131, 676–681 (2011). https://doi.org/10.1016/j.jlumin.2010.11.016

    Article  Google Scholar 

  36. Z.F. Mu, Y.H. Hu, H.Y. Wu, C.J. Fu, F.W. Kang, The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2 xSixO12. Phys. B 406, 864–868 (2011). https://doi.org/10.1016/j.physb.2010.12.015

    Article  ADS  Google Scholar 

  37. P.S. Fortunate, S.N.-T. Misael, Removal of methyl orange (MO) from water by adsorption onto modified local clay (Kaolinite). Phys. Chem. 6, 39–48 (2016). https://doi.org/10.5923/j.pc.20160602.02

    Article  Google Scholar 

  38. H. Chen, A.G. Zhong, J.Y. Wu, J. Zhao, H. Yan, Adsorption behaviors and mechanisms of methyl orange on heat-treated palygorskite clays. Ind. Eng. Chem. Res. 51, 14026–14036 (2012). https://doi.org/10.1021/ie300702j

    Article  Google Scholar 

  39. M. Inagaki, M. Nonaka, F. Kojin, T. Tsumura, M. Toyoda, Cyclic performance of carbon-coated TiO2 for photocatalytic activity of methylene blue decomposition. Environ. Technol. 27, 521–528 (2010). https://doi.org/10.1080/09593332808618669

    Article  Google Scholar 

  40. L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180–2189 (2008). https://doi.org/10.1002/adfm.200701478

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovative University Projects of Guangdong province (Project No. 831783), and the Quality Engineering Construction Projects of Beijing Institute of Technology University (Zhuhai Campus) (Project No. 2016003ZL, and 2017007JXGG), as well as Longshan academic talent research supporting program of Southwest University of Science and Technology (Project No. 18lzxt03, and No. 18zx309) and Southwest University of Science and Technology Natural Science Foundation (Project No. 18zx7125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Qin, Zhiqin Zheng or Xinxing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Qin, M., Yu, J. et al. La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition. Appl. Phys. A 125, 862 (2019). https://doi.org/10.1007/s00339-019-3147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3147-y

Navigation