Skip to main content
Log in

Double doping synergy to improve structural, morphological, optical, and electrical properties of solution-based Cd and M (M: Pb, Sn, Bi) double doped nanocrystalline copper oxide films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, nanostructured CuO, Cd0.01Cu0.99O and Cu0.98Cd0.01M0.01O (M: Pb, Bi, Sn) films were synthesized using the successive ionic layer adsorption and reaction technique. The effects of Cd-doping, Sn, Pb, and Bi double doping on the structural, morphological, optical, and electrical properties were systematically investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectroscopy, and current–voltage (IV) measurements, respectively. XRD results show that the peak intensity, crystallite size, and texture coefficient of the films changed intensely with double doping. SEM images reveal that the surface morphology of the nanostructures changed with the kind of dopant materials due to the differences in ionic radius. Energy dispersive X-ray spectroscopy studies confirmed the presence of Cd2+, Sn4+, Pb2+, and Bi+5 in the doped films. The estimated average optical band gap energies of the CuO samples varied from 1.366 to 1.480 eV with double doping. The lowest average electrical resistivity of 1.21 × 106 Ω cm was found for the Bi0.01 Cd0.01Cu0.98O sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Kang, S.W. Kim, H.Y. Park, J. Phys. Chem. Solids 123, 266–270 (2018)

    Article  ADS  Google Scholar 

  2. B. Sahin, T. Kaya, Microelectron. Eng. 164, 88–92 (2016)

    Article  Google Scholar 

  3. T.A.N. Peiris, J.S. Sagu, Y.H. Yusof, K.G.U. Wijayantha, Thin Solid Films 590, 293–298 (2015)

    Article  ADS  Google Scholar 

  4. R. Vittal, K.-C. Ho, Renew. Sustain. Energy Rev. 70, 920–935 (2017)

    Article  Google Scholar 

  5. M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim. Acta 92, 468–473 (2013)

    Article  Google Scholar 

  6. N. Joshi, L. F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.-C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveira Jr: Sens. Actuators B 257, 906–915 (2018)

  7. T. Jan, J. Iqbal, U. Farooq, A. Gul, R. Abbasi, I. Ahmad, M. Malik, Ceram. Int. 41, 13074–13079 (2015)

    Article  Google Scholar 

  8. A. Tombak, M. Benhaliliba, Y.S. Ocak, T. Kiliçoglu, Results Phys. 5, 314–321 (2015)

    Article  ADS  Google Scholar 

  9. K. Padrón, E.J. Juárez-Pérez, F. Forcade, R. Snyders, X. Noirfalise, C. Lazaa, J. Jiménez, E. Vigil, Thin Solid Films 660, 386–390 (2018)

    Article  ADS  Google Scholar 

  10. Y. Akaltun, Thin Solid Films 594, 30–34 (2015)

    Article  ADS  Google Scholar 

  11. B. Sahin, T. Kaya, Appl Surf Sci 362, 532–537 (2013)

    Article  ADS  Google Scholar 

  12. S.M. Abbas, S.T. Hussain, S. Ali, F. Abbas, N. Ahmad, N. Ali, Y. Khan, J. Alloys Compd. 574, 221–226 (2013)

    Article  Google Scholar 

  13. W. Maeng, S.H. Lee, J.D. Kwon, J. Park, J.S. Park, Ceram. Int. 42, 5517–5522 (2016)

    Article  Google Scholar 

  14. A.M. El Sayed, M. Shaban, Spectrochim. Acta Part A 149, 638–646 (2015)

    Article  Google Scholar 

  15. Y.-Y. Yu, W.-C. Chien, Y.-J. Wang, Thin Solid Films 618, 134–140 (2016)

    Article  ADS  Google Scholar 

  16. P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Appl. Surf. Sci. 307, 280–286 (2014)

    Article  Google Scholar 

  17. M. Umadevi, A.J. Christy, Spectrochim. Acta Part A 109, 133–137 (2013)

    Article  ADS  Google Scholar 

  18. A.D. Khalaji, K. Jafari, S.M. Rad, J. Nan. Str. 2, 505 (2013)

    Google Scholar 

  19. C.Y. Chiang, K. Aroh, S.H. Ehrman, Int. J. Hydrog. Energy 37, 4871–4879 (2012)

    Article  Google Scholar 

  20. Y. Akaltun, M. Aslan, T. Yetim, T. Çayır, A. Çelik, Surf. Coat. Technol. 292, 121–131 (2016)

    Article  Google Scholar 

  21. K. Ravichandran, P.V. Rajkumar, B. Sakthivel, K. Swaminathan, L. Chinnappa, Ceram. Int. 40, 12375–12382 (2014)

    Article  Google Scholar 

  22. R. Aydin, B. Şahin, J. Alloys Compd. 705, 9–13 (2017)

    Article  Google Scholar 

  23. E. Turan, M. Zor, M. Kul, A.S. Aybek, T. Taskopru, Philos. Mag. 92, 1716–1726 (2012)

    Article  ADS  Google Scholar 

  24. C. Pandurangappa, B.N. Lakshminarasappa, Philos. Mag. 91, 4486–4494 (2011)

    Article  ADS  Google Scholar 

  25. Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B 243, 262–270 (2017)

  26. R.-C. Wang, S.-N. Lin, J.-Y. Liu, J. Alloys Compd. 696, 79–85 (2017)

    Article  Google Scholar 

  27. A. Yildiz, S. Horzum, N. Serin, T. Serin, Appl. Surf. Sci. 318, 105–107 (2014)

    Article  ADS  Google Scholar 

  28. M.B. Amor, A. Boukhachem, A. Labidi, K. Boubaker, M. Amlouk, J. Alloys Compd. 693, 490–499 (2017)

    Article  Google Scholar 

  29. C. Tan, D. Sun, D. Xu, X. Tian, Y. Huang, Ceram. Int. 42, 10997–11002 (2016)

    Article  Google Scholar 

  30. X. Zhang, H. Yang: Sens. Actuators B 173, 127–132 (2012)

  31. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, Dhayalan Velauthapillai, A. M. Kumar, Z.M. Gasem: Superlattices Microstruct. 74, 114–122 (2014)

  32. N. Manjula, M. Suganya, D. Prabha, S. Balamurugan, J. Srivind, V.S. Nagarethinam, A.R. Balu, J. Mater. Sci: Mater. Electron. 28, 7615–7621 (2017)

    Google Scholar 

  33. K. Ravichandran, R. Mohan, B. Sakthivel, S. Varadharajaperumal, P. Devendran, T. Alagesan, K. Pandian, Appl. Surf. Sci. 321, 310–317 (2014)

    Article  ADS  Google Scholar 

  34. H. Khmissi, A.M. El Sayed, M. Shaban, J. Mater. Sci. 51, 5924–5938 (2016)

    Article  ADS  Google Scholar 

  35. A.I. Ramos-Guerra, J. Guzmán-Mendoza, M. García-Hipólito, O. Alvarez-Fregoso, C. Falcony, Ceram. Int. 41, 11279–11286 (2015)

    Article  Google Scholar 

  36. M. Kaiser, J. Alloys Compd. 719, 446–454 (2017)

    Article  Google Scholar 

  37. A. Yu, Y. Ma, A. Chen, Y. Li, Y. Zhou, Z. Wang, J. Zhang, L. Chu, J. Yang, X. Li, Vacuum 141, 243–248 (2017)

    Article  ADS  Google Scholar 

  38. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  39. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, J. Alloy. Compd. 708, 804–812 (2017)

    Article  Google Scholar 

  40. E. Gürbüz, B. Şahin, Appl Phys A 124(795), 1–9 (2018)

    Google Scholar 

  41. G. Selvan, M.P. Abubacker, A.R. Balu, J. Mater. Sci: Mater. Electron. 28, 2335–2342 (2017)

    Google Scholar 

  42. F.X. Cheng, J.T. Jia, Z.G. Xu, B. Zhou, C.S. Liao, C.H. Yan, J. Appl. Phys. 86, 2727 (1999)

    Article  ADS  Google Scholar 

  43. P. Kumarn, P. Sharma, A.G. Joshi, R. Shrivastav, S. Dass, V.R. Satsangi, J. Electrochem. Soc. 159, H685–H691 (2012)

    Article  Google Scholar 

  44. C. Moditswe, C.M. Muiva, P. Luhanga, A. Juma, Ceram. Int. 43, 5121–5126 (2017)

    Article  Google Scholar 

  45. J. Wu, K.S. Hui, K.N. Hui, L. Li, H.-H. Chun, Y.R. Cho, J. Mater. Sci: Mater. Electron. 27, 1719–1724 (2016)

    Google Scholar 

  46. A. Bouhdjer, A. Attaf, H. Saidi, Y. Benkhetta, M.S. Aida, I. Bouhaf, A. Rhil, Opt. Int. J. Light Electron. Opt. 127, 6329–6333 (2016)

  47. A. Agrawal, T.A. Dar, P. Sen, J. Nano- Electron. Phys. 5, 02025 (2013)

    Google Scholar 

  48. K.O. Ighodalo, D. Obi, A. Agbogu, B.N. Ezealigo, A.C. Nwanya, S.L. Mammah, R. Bucher, M. Maaza, F.I. Ezem, Mater. Res. Bull. 94, 528–536 (2017)

    Article  Google Scholar 

  49. R.C. Rodriguez, A.I. Oliva, V. Sosa, F.C. Briones, J.L. Pena, Appl. Surf. Sci. 161, 340–346 (2000)

    Article  ADS  Google Scholar 

  50. S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75–83 (2017)

    Article  Google Scholar 

  51. L. Sponza, J. Goniakowski, C. Noguera, Phys. Rev. B 93, 195435 (2016)

    Article  ADS  Google Scholar 

  52. R. Aydin, B. Şahin, Ceram. Int. 43, 9285–9290 (2017)

    Article  Google Scholar 

  53. Y. Akaltun, T. Çayır, J. Alloys Compd. 625, 144–148 (2015)

    Article  Google Scholar 

  54. A. Mukherjee, B. Satpati, S.R. Bhattacharyya, R. Ghosh, P. Mitra, Physica E 65, 51–55 (2015)

    Article  ADS  Google Scholar 

  55. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, T. Petrisor, Ceram. Int. 39, 5535–5543 (2013)

    Article  Google Scholar 

  56. R.K. Gupta, Z. Serbetçi, F. Yakuphanoğlu, J. Alloys Compd. 515, 96–100 (2012)

    Article  Google Scholar 

  57. A.D. Trolio, E.M. Bauer, G. Scavia, C. Veroli, J. Appl. Phys. 105, 113109 (2009)

    Article  ADS  Google Scholar 

  58. I.B. Miled, M. Jlassi, I. Sta, M. Dhaouadi, M. Hajji, G. Mousdis, M. Kompitsas, H. Ezzaouia: J. Mater. Sci.- Mater. Electron. 29, 11286–11295 (2018)

  59. L.L. Pan, G.Y. Li, J.S. Lian, Appl. Surf. Sci. 274, 365–370 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Scientific Research Projects Unit of Selcuk University (Project No: 17703028) and Scientific Research Commission of Mustafa Kemal University (Project No.: 11500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunyamin Sahin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, B., Aydin, R. Double doping synergy to improve structural, morphological, optical, and electrical properties of solution-based Cd and M (M: Pb, Sn, Bi) double doped nanocrystalline copper oxide films. Appl. Phys. A 125, 834 (2019). https://doi.org/10.1007/s00339-019-3133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3133-4

Navigation