Skip to main content
Log in

Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work aims to research not only neutron and gamma shielding specialties of Sm2O3-doped TeO2–ZnO glasses but also mass stopping power (MSP) and projected range (PR) for alpha and proton particles. Mass attenuation coefficient (μ/ρ) of 60(TeO2)–(40−x)ZnO–x(Sm2O3): x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 mol%) glasses were obtained using GEANT4 Monte Carlo codes and WinXCOM software. A good agreement was observed between the two outcomes. The insertion of Sm2O3 into the glasses raised the μ/ρ values. It was found that TZSm0.4 glass owns lowest MFP, HVL and TVL values than the other glass samples due to its high specific gravity. Besides, the additive material increased effective atomic number (Zeff) values while the Exposure (EBF) and Energy Absorption (EABF) Buildup Factors decreased which are computed at 0.015–15 MeV photon energies up to 40 mfp. This shows that the addition of Sm2O3 improves the performance of glasses to reduce gamma radiation. Moreover, fast neutron macroscopic cross-sections (ΣR) of the glasses were specified. MSP and PR values were also computed for proton (H1) and alpha (He+2) particles. The outcomes display that the specific gravity of the TZSm glasses are extremely influential on neutron, alpha and proton shielding. With the largest ΣR and lowest PR values, the TZ0.4 glass showed the ability to stop both neutral and charged particles. It can be deduced that TZSM glasses with Sm2O3 addition may be preferred shield materials in the sense of gamma, neutron, alpha and proton attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Baskar, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193 (2012)

    Article  Google Scholar 

  2. J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Energy 106, 387–395 (2018)

    Article  Google Scholar 

  3. V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015)

    Article  ADS  Google Scholar 

  4. S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F.A. Balogun, Investigation of gamma radiation shielding capability of two clay materials. Nucl. Eng. Technol. 50, 957–962 (2018)

    Article  Google Scholar 

  5. M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride-based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33–39 (2017)

    Article  ADS  Google Scholar 

  6. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. (2019). https://doi.org/10.1016/j.net.2019.05.013

    Article  Google Scholar 

  7. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)

    Article  ADS  Google Scholar 

  8. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018)

    Article  ADS  Google Scholar 

  9. Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non-Cryst. Solids 509, 99–105 (2019)

    Article  ADS  Google Scholar 

  10. Y. Al-Hadeethi, M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 45, 24858–24864 (2019)

    Article  Google Scholar 

  11. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 161, 55–59 (2019)

    Article  Google Scholar 

  12. E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. 160, 112–123 (2019)

    Article  ADS  Google Scholar 

  13. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)

    Article  ADS  Google Scholar 

  14. A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3–TeO2–Na2O–CaO glasses. J. Non-Cryst. Solids 514, 52–59 (2019)

    Article  ADS  Google Scholar 

  15. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364–376 (2016)

    Article  Google Scholar 

  16. H. Afifi, R. El-Mallawany, N. El-Khoshkhany, Ultrasonic studies of (TeO2) 50–(V2O5)50−x(TiO2)x glasses. Mater. Chem. Phys. 95, 321 (2006)

    Article  Google Scholar 

  17. H. Afifi, M. Sedky, R. El-Mallawany, Relaxation phenomena in tellurite glasses. J. Appl. Phys. 107, 053523 (2010)

    Article  ADS  Google Scholar 

  18. Y.B. Saddeek, R. El-Mallawany, H.A. Afifi, Mechanical relaxation of some tellurovanadate glasses. J. Non Cryst. Solid 417, 28 (2015)

    Article  ADS  Google Scholar 

  19. R. El-Mallawany, H. Afifi, Elastic moduli and crosslinking of some tellurite glass systems. J. Matter. Chem. And Phys. 143(1), 11 (2013)

    Article  Google Scholar 

  20. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348 (2009)

    Article  ADS  Google Scholar 

  21. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)

    Article  Google Scholar 

  22. I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd Sm and Er rare earth ions. Phys. B 406, 972–980 (2011)

    Article  ADS  Google Scholar 

  23. I.Z. Hager, R. El-Mallawany, Preparation and structural studied in the (70–x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45, 897–905 (2010)

    Article  ADS  Google Scholar 

  24. H.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 85, 2655–2659 (2002)

    Article  Google Scholar 

  25. S.E. Ibrahim, Y.S. Rammah, I.Z. Hager, R. El-Mallawany, UV and electrical properties of TeO2-WO3-Li2O-Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses. J. Non-Cryst. Solids 498, 443–447 (2018)

    Article  ADS  Google Scholar 

  26. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100–x)TeO2–(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)

    Article  Google Scholar 

  27. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)

    Article  ADS  Google Scholar 

  28. M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017)

    Article  ADS  Google Scholar 

  29. A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation ofthe gamma ray shielding parameters of (100–x)[0.5Li2O–0.1B2O3 –0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids 521 (2019) 119489.

  30. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. DOI: 10.1016/j.net.2019.05.013.

  31. M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019)

    Article  ADS  Google Scholar 

  32. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int. DOI: 10.1016/j.ceramint.2019.07.056.

  33. Y.S. Rammah, A. Askin, A.S. Abouhaswa, F.I. El-Agawany, M.I. Sayyed, Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl. Phys. A 125, 523 (2019)

    Article  ADS  Google Scholar 

  34. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3–Bi2O3–PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)

    Article  ADS  Google Scholar 

  35. B. Eraiah, Optical properties of samarium doped zinc–tellurite glasses. Bull. Mater. Sci. 29, 375–378 (2006)

    Article  Google Scholar 

  36. B. Eraiah, R.V. Anavekar, DC electronic conductivity studies on zinc vanadophosphate glasses. Phys. Chem. Glasses 42, 121–125 (2001)

    Google Scholar 

  37. I. Ardelean, S. Cora, R.C. Lucacel, O. Hulpus, EPR and FT-IR spectroscopic studies of B2O3–Bi2O3–MnO glasses. Solid State Sci. 7, 1438–1442 (2005)

    Article  ADS  Google Scholar 

  38. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code (J. Mol, Struct, 2019)

    Book  Google Scholar 

  39. F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)

    Article  Google Scholar 

  40. F. Akman, M.R. Kaçal, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005–1011 (2017)

    Article  ADS  Google Scholar 

  41. B. Oto, S.E. Gulebaglan, Z. Madak, E. Kavaz, Effective atomic numbers, electron densities and gamma rays buildup factors of inorganic metal halide cubic perovskites CsBX3 (B = Sn, Ge; X = I, Br, Cl). Radiat. Phys. Chem. 159, 195–206 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.010

    Article  ADS  Google Scholar 

  42. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy (2012). https://doi.org/10.1016/j.anucene.2012.01.004

    Article  Google Scholar 

  43. E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019)

    Article  Google Scholar 

  44. B. Oto, N. Yildiz, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. (2015). https://doi.org/10.1016/j.nucengdes.2015.07.060

    Article  Google Scholar 

  45. R. Macian, Biological effects of radiation, reactors concepts manual, USNRC Technical Training Center.

  46. M.O. El-Ghossain, Calculations of stopping power and range of electrons interaction with different material and human body parts. Int. J. Sci. Technol. Res. 6(1), 114–118 (2017)

    Google Scholar 

  47. J.F. Ziegler, SRIM-2003, in Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms (2004). doi:10.1016/j.nimb.2004.01.208.

  48. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter (2010), in: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms (2010) 10.1016/j.nimb.2010.02.091

  49. S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  50. J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006)

    Article  ADS  Google Scholar 

  51. Y. Yoshihara, K. Shimazoe, Y. Mizumachi, H. Takahashi, Evaluation of double gamma coincidence Compton imaging method with GEANT4 simulation. Nucl. Instrum. Meth. A 873, 51–55 (2017)

    Article  ADS  Google Scholar 

  52. H.O. Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu. Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. 45 (2019) 24664–24674. doi: 10.1016/j.ceramint.2019.08.204.

  53. S.A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO-(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  ADS  Google Scholar 

  54. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems. J. Non-Cryst. Solids 518, 92–102 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.012

    Article  ADS  Google Scholar 

  55. A. Alatawi, A.M. Alsharari, S.A.M. Issa, M. Rashad, A.A.A. Darwish, Y.B. Saddeek, H.O. Tekin, Improvement of mechanical properties and radiation shielding performance of Al-Bi-BO3 glasses using yttria: An experimental investigation. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.069

    Article  Google Scholar 

  56. S.A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances ofxPbO-(99–x)B2O3-Sm2O3 glass system. Ceram. Int. 45, 23561–23571 (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  Google Scholar 

  57. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2-PbO-CdO-Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation. Ceram. Int. 45, 19206–19222 (2019). https://doi.org/10.1016/j.ceramint.2019.06.168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kavaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Agawany, F.I., Kavaz, E., Perişanoğlu, U. et al. Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A 125, 838 (2019). https://doi.org/10.1007/s00339-019-3129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3129-0

Navigation