Skip to main content
Log in

Synthesis and evaluation of the structural, microstructural, optical and magnetic properties of Zn1−xCoxO thin films grown onto glass substrate by ultrasonic spray pyrolysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrasound pyrolysis spray technique is used to prepare single-phase thin films of Zn1−xCoxO (x = 0–22 at.%). The hexagonal wurtzite structure of the films is confirmed by X-ray diffraction with an average crystallite size estimated in the range of 18–30 nm. The compound structure and stoichiometry of the films are further characterized by energy-dispersive spectroscopy (EDAX). The spectrum analysis agreement great chords between the expected and measured Co atomic content in the films indicating an effective doping. The results also reveal a high solubility of Co into ZnO solid solution at about 14 at.%. For the optical proprieties, the bandgap energy decreases due to the presence of high concentrations of localized states in the thin films. The photoluminescence spectra of all the samples exhibited a broad emission in the visible range. In addition, the magnetic properties of Zn1−xCoxO thin films are found to be strongly influenced by Co doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Oktik, Low cost non-vacuum techniques for the preparation of thin/thick films for photovoltaic applications. Prog. Cryst. Growth Charact. 17, 171–240 (1988)

    Article  Google Scholar 

  2. K. Bouzid, A. Djelloul, N. Bouzid, J. Bougdira, Electrical resistivity and photoluminescence of zinc oxide films prepared by ultrasonic spray pyrolysis. Phys. Status Solid. A. 206, 106–115 (2009)

    Article  ADS  Google Scholar 

  3. A. Janotti, ChG Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  4. K. Ellmer, A. Klein, B. Rech (eds.), Transparent Conductive Zinc Oxide-Basics and Applications in Thin Film Solar Cells. (Series: Springer Series in Materials Science, Berlin, 2008), p. 104

  5. H.M. Yang, S. Nie, Preparation and characterization of Co-doped ZnO nanomaterials. Mater. Chem. Phys. 114, 279–282 (2009)

    Article  Google Scholar 

  6. M. Yang, Z.X. Guo, K.H. Qiu, J.P. Long, G.F. Yin, D.G. Guan, S.T. Liu, S.J. Zhou, Synthesis and characterization of Mn-doped ZnO column arrays. Appl. Surf. Sci. 256, 4201–4205 (2010)

    Article  ADS  Google Scholar 

  7. H. Saal, T. Bredow, M. Binnewies, Band gap engineering of ZnO via doping with manganese: effect of Mn clustering. Phys. Chem. Chem. Phys. 11, 3201–3209 (2009)

    Article  Google Scholar 

  8. G.M. Kumar, P. Ilanchezhiyan, J. Kawakita, M. Subramanian, R. Jayavel, Magnetic and optical property studies on controlled low-temperature fabricated one-dimensional Cr doped ZnO nanorods. Cryst. Eng. Commun. 12, 1887–1892 (2010)

    Article  Google Scholar 

  9. S. Fabbiyola, L.J. Kennedy, U. Aruldoss, M. Bououdina, A.A. Dakhel, J. Judith Vijaya, Synthesis of Co-doped ZnO nanoparticles via co-precipitation: structural, optical and magnetic properties. Powder Technol. 286, 757–765 (2015)

    Article  Google Scholar 

  10. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  11. Y.X. Wang, X. Ding, Y. Cheng, Y.J. Zhang, L.L. Yang, H.L. Liu, H.G. Fan, Y. Liu, J.H. Yang, Properties of Co-doped ZnO films prepared by electrochemical deposition. Cryst. Res. Technol. 44(5), 517–520 (2009)

    Article  Google Scholar 

  12. C. Song, F. Zeng, K.W. Geng, X.B. Wang, Y.X. Shen, F. Pan, The magnetic properties of Co-doped ZnO diluted magnetic insulator films prepared by direct current reactive magnetron co-sputtering. J. Magn. Magn. Mater. 309, 25–30 (2007)

    Article  ADS  Google Scholar 

  13. A. Zukova, A. Teiserskis, S. van Dijken, Y.K. Gun’ko, V. Kazlauskiene, Giant moment and magnetic anisotropy in Co-doped ZnO films grown by pulse-injection metal organic chemical vapor deposition. Appl. Phys. Lett. 89, 232503–232505 (2006)

    Article  ADS  Google Scholar 

  14. H. Matsui, H. Tabata, Simultaneous control of growth mode and ferromagnetic ordering in Co-doped ZnO layers with Zn polarity. Phys. Rev. B. 75, 014438–014447 (2007)

    Article  ADS  Google Scholar 

  15. A. Sivagamasundari, R. Pugaze, S. Chandrasekar, S. Rajagopan, R. Kannan, Absence of free carrier and paramagnetism in cobalt-doped ZnO nanoparticles synthesized at low temperature using citrate sol–gel route. Appl. Nanosci. 3, 383–388 (2013)

    Article  ADS  Google Scholar 

  16. G. Iqbal, S. Faisal, S. Khan, D.F. Shams, A. Nadhman, Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 192, 141–146 (2019)

    Article  Google Scholar 

  17. H.S. Sindhu, S. D. Kulkarni, R.J. Choudhary, P.D. Babu, B.V. Rajendra, Influence of cobalt doping on structure, optical and magnetic properties of spray pyrolysed nano structured ZnO films. Phys. B: Phys. Condens. Matter. https://doi.org/10.1016/j.physb.2019.07.034

  18. M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton, Structure and magnetism of cobalt doped ZnO thin films. New J. Phys. 10, 065002 (2008)

    Article  ADS  Google Scholar 

  19. N.K. Tarwal, K.V. Gurav, T. PremKumar, Y.K. Jeong, H.S. Shim, I.Y. Kim, J.H. Kim, J.H. Jang, P.S. Patil, Structure, X-ray photoelectron spectroscopy, and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. J. Anal. Appl. Pyrolysis 106, 26–32 (2014)

    Article  Google Scholar 

  20. S. Karamat, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, W. Zhou, Ferromagnetism in ZnCoO thin films deposited by PLD. Appl. Phys. A 101, 717–722 (2010)

    Article  ADS  Google Scholar 

  21. C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Cobalt-doped ZnO—a room temperature dilute magnetic semiconductor. Appl. Surf. Sci. 247, 493–496 (2005)

    Article  ADS  Google Scholar 

  22. A. Dinia, G. Schmerber, C. Mény, V. Pierron-Bohnes, E. Beaurepaire, Room- temperature ferromagnetism in Zn1 xCoxOZn1 xCoxO magnetic semiconductors prepared by sputtering. J. Appl. Phys. 97, 123908 (2005)

    Article  ADS  Google Scholar 

  23. G. Lawes, A.S. Risbud, A.P. Ramirez, R. Seshadri, Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys. Rev. B. 71, 045201 (2005)

    Article  ADS  Google Scholar 

  24. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004)

    Article  ADS  Google Scholar 

  25. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, Magnetic properties of epitaxially grown semiconducting Zn1 xCoxOZn1 xCoxO thin films by pulsed laser deposition. J. Appl. Phys. 92, 6066 (2002)

    Article  ADS  Google Scholar 

  26. Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, T.C. Chong, Structural and optical properties of Co-doped ZnO thin films. J. Supercond. 18, 97–103 (2005)

    Article  ADS  Google Scholar 

  27. R. Siddheswaran, R. Medlín, C.E. Jeyanthi, S.G. Raj, R.V. Mangalaraja, Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications. Appl. Phys. A 9, 125 (2019). https://doi.org/10.1007/s00339-019-2886-0

    Article  Google Scholar 

  28. A. Aravind, K. Hasna, M.K. Jayaraj, M. Kumar, R. Chandra, Magnetic and Raman scattering studies of Co-doped ZnO thin films grown by pulsed laser deposition. Appl. Phys. A 115(3), 843–849 (2014)

    Article  ADS  Google Scholar 

  29. S. Roguai, A. Djelloul, C. Nouveau, T. Souier, A.A. Dakhel, M. Bououdina, Structure, microstructure and determination of optical constants from transmittance data of Co-doped Zn0.90 Co0.05M 0.05 O (M = Al, Cu, Cd, Na) films. J. Alloys Compd. 599, 150–158 (2014)

    Article  Google Scholar 

  30. M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Antiferromagnetism in bulk Zn1 xCoxO Zn1 xCoxO magnetic semiconductors prepared by the coprecipitation technique. Appl. Phys. Lett. 87, 052501 (2005)

    Article  ADS  Google Scholar 

  31. X.C. Chen, J.P. Zhou, H.Y. Wang, P.S. Xu, G.Q. Pan, Chin. Phys. B. 20, 9 (2011)

    Google Scholar 

  32. D. Bao, H. Gu, A. Kuang, Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312, 37–39 (1998)

    Article  ADS  Google Scholar 

  33. S. Benramache, B. Benhaoua, Influence of substrate temperature and Cobalt concentration on structural and optical properties of ZnO thin films prepared by ultrasonic spray technique. Superlattices Microstruct. 52, 807–815 (2012)

    Article  ADS  Google Scholar 

  34. G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by a sol-gel spin coating method. Appl. Surf. Sci. 313, 870–876 (2014)

    Article  Google Scholar 

  35. P. Lommens, P.F. Smet, C.M. Donega, A. Meijerink, L. Piraux, S. Michotte, S.M. Tempfli, D. Poelman, Z. Hens, Photoluminescence properties of Co2+-doped ZnO nanocrystals. J. Lumin. 118, 245–250 (2006)

    Article  Google Scholar 

  36. A.S. Pereira, A.O. Ankiewicz, W. Gehlhoff, A. Hoffmann, S. Pereira, T. Trindade, M. Jrundmann, M.C. Carmo, N.A. Sobolev, Surface modification of Co-doped ZnO nanocrystals and its effects on the magnetic properties. J. Appl. Phys. 103, 07D140 (2008). https://doi.org/10.1063/1.2833300

    Article  Google Scholar 

  37. F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids. APS J. Phys. Rev. 92, 1324–1326 (1953)

    Article  ADS  Google Scholar 

  38. B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366, 107–110 (2000)

    Article  ADS  Google Scholar 

  39. D.H. Zhang, Z.Y. Xue, Q.P. Wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J. Phys. D. 35, 2837 (2002)

    Article  ADS  Google Scholar 

  40. A. Kaphle, P. Hari, Characterization of aluminium doped nanostructured ZnO/p-Si heterojunctions. Int. J. Eng. Sci. (IJES) 5, 41–51 (2016)

    Google Scholar 

  41. U. Godavarti, V.D. Mote, M.V. Ramana Reddy, P. Nagaraju, Y. VijayKumar, K. T. Dasari, M. P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys. B Phys. Condens. Matter. 533, 151–160 (2019). https://doi.org/10.1016/j.physb.2018.10.034

  42. U. Philipose, S.V. Nair, S. Trudel, C.F. Souza, S. Aouba, R.H. Hill, H.E. Ruda, High- temperature ferromagnetism in Mn-doped ZnO nanowires. Appl. Phys. Lett. 88, 263101 (2006)

    Article  ADS  Google Scholar 

  43. L. Xu, H. Zhang, K. Shen, M. Xu, Q. Xu, Room temperature ferromagnetism in Co-doped ZnO prepared by microemulsion. J. Supercond. Nov. Magn. 25, 1951–1956 (2012)

    Article  Google Scholar 

  44. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alna’Washi, F. Al-Dweri, F. El Akkad, Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys. Compd. 655, 244–252 (2016)

    Article  Google Scholar 

  45. Z. Xiong, X.C. Liu, S.Y. Zhuo, J.H. Yang, E.W. Shi, W.S. Yan, Oxygen enhanced ferromagnetism in Cr-doped ZnO films. Appl. Phys. Lett. 99, 052513 (2011)

    Article  ADS  Google Scholar 

  46. J.A. Wibowo, N.F. Djaja, R. Saleh, Cu- and Ni-doping effect on structure and magnetic properties of Fe-doped ZnO nanoparticles. Adv. Mater. Phys. Chem. 3, 48–57 (2013)

    Article  Google Scholar 

  47. J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett. 96, 197208–197212 (2006)

    Article  ADS  Google Scholar 

  48. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, F. N. Dultsev, Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B. 18, 1385–1391(2000).

Download references

Acknowledgements

The authors would like to thank the National Project Research (PNR) and LASPI2A Laboratory of Khenchela University (Algeria) for their financial support of this research project. The authors thank Dr. Ali Hafs for VSM measurements, Laboratoire de Physicochimie des Matériaux (LPCM), El Tarf University, 36000 El Tarf, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Roguai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roguai, S., Djelloul, A. Synthesis and evaluation of the structural, microstructural, optical and magnetic properties of Zn1−xCoxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl. Phys. A 125, 816 (2019). https://doi.org/10.1007/s00339-019-3118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3118-3

Navigation