Skip to main content
Log in

Assessment of nuclear shielding and alpha/proton mass stopping power properties of various metallic glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work aimed to investigate alpha, proton, neutron and gamma shielding qualifications of different bulk metallic glasses (Zr65Al7.5Ni10Cu17.5, Ti40Zr26Be28Fe6, Cu49Hf42Al9, Pd40Ni40P20, Ni50Pd30P20, and Ca65Mg15Zn20) for nuclear security applications. Therefore, vital gamma radiation attenuation parameter namely mass attenuation coefficients (\(\mu_{\rho }\)) of investigated bulk metallic glasses (BMG) were determined using WinXCOM program. Next, half value layer (HVL), effective atomic number (Zeff), effective electron density (Nel) and exposure buildup factors (EBF) were perused in a wide energy interval (0.02–20 MeV). Among the investigated samples, MG3 was found to be superior attenuator sample for gamma radiation, while MG6 was the least forceful glasses to reduce the photon intensity. The elements Pd and Hf in MG4, MG5 and MG3 were enhanced radiation shielding competences of the BMGs. Further, fast neutron removal cross-sections (\(\sum R\)) were evaluated to investigate neutron protection ability of the BMGs. Projected range (PR) and mass stopping power (MSP) values were obtained for proton (H1) and alpha particles (He+2). The outcomes showed that elemental composition of the metallic glasses was highly powerful on alpha, proton and neutron attenuation. It can be concluded that MG3 sample exhibited high nuclear shielding efficiency as deduced from the largest \(\mu_{\rho }\), Zeff, and \(\sum R\), and the lowest HVL, EBF, MSP and PR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Oto, N. Yildiz, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. (2015). https://doi.org/10.1016/j.nucengdes.2015.07.060

    Article  Google Scholar 

  2. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiat. Meas. (2010). https://doi.org/10.1016/j.radmeas.2010.04.012

    Article  Google Scholar 

  3. E.S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy (2016). https://doi.org/10.1016/j.anucene.2016.05.028

    Article  Google Scholar 

  4. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non-Cryst Solids (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.011

    Article  Google Scholar 

  5. N. Ekinci, E. Kavaz, B. Aygün, U. Perişanoğlu, Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defects Solids 0150, 1–17 (2019). https://doi.org/10.1080/10420150.2019.1596110

    Article  Google Scholar 

  6. N.S. Prabhu, V. Hegde, M.I. Sayyed, O. Agar, S.D. Kamath, Investigations on structural and radiation shielding properties of Er 3+ doped zinc bismuth borate glasses. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.03.074

    Article  Google Scholar 

  7. E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.03.032

    Article  Google Scholar 

  8. E. Kavaz, H.O. Tekin, N.Y. Yorgun, F. Özdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: Experimental and Monte Carlo study. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.05.019

    Article  Google Scholar 

  9. E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloy Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.04.106

    Article  Google Scholar 

  10. M.I.Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3. Progress Nucl. Energy. (2020). 10.1016/j.pnucene.2019.103118.

  11. M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.04.005

    Article  Google Scholar 

  12. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.01.058

    Article  Google Scholar 

  13. S.A.M. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2018.10.064

    Article  Google Scholar 

  14. S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi 2 O 3 content on mechanical and nuclear radiation shielding properties of Bi 2 O 3 -MoO 3 -B 2 O 3 -SiO 2 -Na 2 O-Fe 2 O 3 glass system. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102165

    Article  Google Scholar 

  15. C.H. Wang, W.H. Dong, C. Shek, Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44(23), 45–89 (2004)

    Google Scholar 

  16. W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified Gold-Silicon alloys. Nature (1960). https://doi.org/10.1038/187869b0

    Article  Google Scholar 

  17. A. Inoue, H. Yamaguchi, T. Zhang, T. Masumoto, Al-La-Cu amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM. (1990). https://doi.org/10.2320/matertrans1989.31.104

    Article  Google Scholar 

  18. A. Inoue, T. Zhang, T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Mater. Trans. JIM. (1990). https://doi.org/10.2320/matertrans1989.31.177

    Article  Google Scholar 

  19. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. (2000). https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  Google Scholar 

  20. J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira, U.D. Schwarz, Z. Liu, R. Yamada, W. Dmowski, M.D. Shattuck, C.S. O’Hern, T. Egami, E. Bouchbinder, J. Schroers, Mechanical glass transition revealed by the fracture toughness of metallic glasses. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-05682-8

    Article  Google Scholar 

  21. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2007.01.052

    Article  Google Scholar 

  22. J. Qiao, H. Jia, P.K. Liaw, Metallic glass matrix composites. Mater. Sci. Eng. R Rep. (2016). https://doi.org/10.1016/j.mser.2015.12.001

    Article  Google Scholar 

  23. A. Khmich, K. Sbiaai, A. Hasnaoui, Structural behavior of Tantalum monatomic metallic glass. J. Non-Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2019.01.024

    Article  Google Scholar 

  24. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. (2005). https://doi.org/10.2320/matertrans.46.2817

    Article  Google Scholar 

  25. A. Inoue, High strength bulk amorphous alloys with low critical cooling rates (Overview). Mater. Trans. JIM. (1995). https://doi.org/10.2320/matertrans1989.36.866

    Article  Google Scholar 

  26. A. Inoue, Bulk glassy alloys: historical development and current research. Engineering. (2015). https://doi.org/10.15302/J-ENG-2015038

    Article  Google Scholar 

  27. M. Chen, Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. (2008). https://doi.org/10.1146/annurev.matsci.38.060407.130226

    Article  Google Scholar 

  28. K.A. Avchaciov, Y. Ritter, F. Djurabekova, K. Nordlund, K. Albe, Controlled softening of Cu64Zr36 metallic glass by ion irradiation. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4804630

    Article  Google Scholar 

  29. Y.H. Qiu, C. Xu, E.G. Fu, P.P. Wang, J.L. Du, Z.Y. Hu, X.Q. Yan, X.Z. Cao, Y.G. Wang, L. Shao, Mechanisms for the free volume tuning the mechanical properties of metallic glass through ion irradiation. Intermetallics (2018). https://doi.org/10.1016/j.intermet.2018.08.006

    Article  Google Scholar 

  30. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3in gamma and neutron parameters for different concentration of ErCl3-SiO2(EDFA) for the signal protection from nuclear radiation. J Alloy Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.12.176

    Article  Google Scholar 

  31. E. Kavaz, U. Perişanoğlu, N. Ekinci, Y. Özdemır, Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int. J. Radiat. Biol. (2016). https://doi.org/10.1080/09553002.2016.1175681

    Article  Google Scholar 

  32. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  33. O. Agar, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, H.O. Tekin, M.I. Sayyed, T.T. Erguzel, N. Tarhan, Er 2 O 3 effects on photon and neutron shielding properties of TeO 2 -Li 2 O-ZnO-Nb 2 O 5 glass system. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102277

    Article  Google Scholar 

  34. J.M. Sharaf, H. Saleh, Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. (2015). https://doi.org/10.1016/j.radphyschem.2015.01.031

    Article  Google Scholar 

  35. B. Oto, S.E. Gulebaglan, Z. Madak, E. Kavaz, Effective atomic numbers, electron densities and gamma rays buildup factors of inorganic metal halide cubic perovskites CsBX3 (B = Sn, Ge; X = I, Br, Cl). Radiat. Phys. Chem. 159, 195–206 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.010

    Article  ADS  Google Scholar 

  36. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy (2012). https://doi.org/10.1016/j.anucene.2012.01.004

    Article  Google Scholar 

  37. K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates. Ann. Nucl. Energy (2013). https://doi.org/10.1016/j.anucene.2012.08.024

    Article  Google Scholar 

  38. E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019). https://doi.org/10.1016/j.pnucene.2019.03.029

    Article  Google Scholar 

  39. J.F. Ziegler, SRIM-2003, In: Nuclear ınstruments and methods in physics research, section B: beam ınteractions with materials and atoms (2004) doi:10.1016/j.nimb.2004.01.208.

    Article  Google Scholar 

  40. F. James, J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, the stopping and range of ions in matter. Nucl. Instrum. Methods Physics Res. B. (2008). https://doi.org/10.1016/j.nimb.2004.01.208.4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Perişanoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perişanoğlu, U. Assessment of nuclear shielding and alpha/proton mass stopping power properties of various metallic glasses. Appl. Phys. A 125, 801 (2019). https://doi.org/10.1007/s00339-019-3105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3105-8

Navigation