Skip to main content
Log in

Thermal decomposition of ferritin core

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferritin is an iron storage protein found in living organisms. It is an antiferromagnetic nanoparticle system consisting of an inorganic core surrounded by a protein shell. Ferritin is characterized by X-ray diffractometer, transmission electron microscope, atomic absorption spectrometer and thermogravimetric analyzer. We find that the ferritin core is poorly crystalline, 8 nm in size and consists of 10 wt% iron. It is believed that cores of ferritin consist of single-phase inorganic mineral ferrihydrite. Recently, we have shown that ferrihydrite decomposes directly to \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{3}\) on heating in air at 440 \(^{\circ }\)C. In the present work, we show that ferritin cores gradually decompose to a mixture of \(\gamma\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) and \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) on heating in air. This mixture finally stabilizes to \(\alpha\)-\(\hbox {Fe}_{{2}}\hbox {O}_{{3}}\) on further heating. The magnetic behaviour of final sample is also studied. This work confirms that the ferritin cores contain more than one phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. S. Jacobs, C. P. Bean, in Magnetism, Vol. III edited by G. T. Rado, H. Suhl (Academic Press Inc., New York, 1963), p. 271

  2. L. Néel, in Low Temperature Physics, ed. by C. Dewitt, B. Dreyfus, P.D. de Gennes (Gordan and Beach, New York, 1962), p. 413

  3. R.W. Chantrell, K. O’Grady, in Applied Magnetism, ed. by R. Gerber, C.D. Wright, G. Asti (Kluwer Academic Publishers, Amsterdam, 1994), p. 113

  4. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  5. A.S. Edelstein, R.C. Cammarata (eds.), Nanomaterials: Synthesis, Properties and Applications (Taylor & Francis, New York, 1996)

    Google Scholar 

  6. J.L. Jambor, J.E. Dutrizac, Chem. Rev. 98, 2549 (1998)

    Google Scholar 

  7. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization (Wiley-VCH, Berlin, 2000)

    Google Scholar 

  8. F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, Science 316, 1726 (2007)

    ADS  Google Scholar 

  9. M.S. Seehra, V.S. Babu, A. Manivannan, J.W. Lynn, Phys. Rev. B 61, 3513 (2000)

    ADS  Google Scholar 

  10. M.S. Seehra, A. Punnoose, Phys. Rev. B 64, 132410 (2001)

    ADS  Google Scholar 

  11. A. Punnoose, T. Phanthavady, M.S. Seehra, N. Shah, G.P. Huffman, Phys. Rev. B 69, 54425 (2004)

    ADS  Google Scholar 

  12. C. Rani, S.D. Tiwari, J. Magn. Magn. Mater. 385, 272 (2015)

    ADS  Google Scholar 

  13. C. Rani, S.D. Tiwari, Phys. B 513, 58 (2017)

    ADS  Google Scholar 

  14. D.A. Balaev et al., J. Exp. Theor. Phys. Lett. 98, 139 (2013)

    Google Scholar 

  15. D.A. Balaev et al., J. Exp. Theor. Phys. 119, 479 (2014)

    Google Scholar 

  16. D.A. Balaev et al., Phys. Solid State 58, 1782 (2016)

    ADS  Google Scholar 

  17. D.A. Balaev et al., J. Magn. Magn. Mater. 410, 171 (2016)

    ADS  Google Scholar 

  18. C. Rani, S.D. Tiwari, Appl. Phys. A 123, 532 (2017)

    ADS  Google Scholar 

  19. C. Rani, Ph. D. Thesis, Thapar Institute of Engineering & Technology, Patiala (2018)

  20. J.M. Cowley, D.E. Janney, R.C. Gerkin, P.R. Buseck, J. Struct. Biol. 131, 210 (2000)

    Google Scholar 

  21. S.A. Makhlouf, F.T. Parker, A.E. Berkowitz, Phys. Rev. B 55, R14717 (1997)

    ADS  Google Scholar 

  22. N.J.O. Silva et al., Phys. Rev. B 79, 104405 (2009)

    ADS  Google Scholar 

  23. N.J.O. Silva et al., Phys. Rev. B 84, 104427 (2011)

    ADS  Google Scholar 

  24. S.H. Kilcoyne, R. Cywinski, J. Magn. Magn. Mater. 140–144, 1466 (1995)

    ADS  Google Scholar 

  25. N. Kaur, S.D. Tiwari, J. Phys. Chem. Solids 123, 279 (2018)

    ADS  Google Scholar 

  26. P.M. Harrison, F.A. Fischbach, T.G. Hoy, G.H. Haggisi, Nature 216, 1188 (1967)

    ADS  Google Scholar 

  27. K.M. Towe, W.F. Bradley, J. Colloid Interface Sci. 24, 384 (1967)

    ADS  Google Scholar 

  28. S.M. Gorun, G.C. Papaefthymiou, R.B. Frankel, S.J. Lippard, J. Am. Chem. Soc. 109, 3337 (1987)

    Google Scholar 

  29. J.H. Jung, T.W. Eom, Y.P. Lee, J.Y. Rhee, E.H. Choi, J. Magn. Magn. Mater. 323, 3077 (2011)

    ADS  Google Scholar 

  30. N.D. Chasteen, P.M. Harrison, J. Struct. Biol. 126, 182 (1999)

    Google Scholar 

  31. F. Brem, G. Stamm, A.M. Hirt, J. Appl. Phys. 99, 123906 (2006)

    ADS  Google Scholar 

  32. N. Gálvez, B. Fernández, P. Sánchez, R. Cuesta, M. Ceolín, M. Clemente-León, S. Trasobares, M. López-Haro, J.J. Calvino, O. Stéphan, J.M. Domínguez-Vera, J. Am. Chem. Soc. 130, 8062 (2008)

    Google Scholar 

  33. M. Preisinger, M. Krispin, T. Rudolf, S. Horn, D.R. Strongin, Phys. Rev. B 71, 165409 (2005)

    ADS  Google Scholar 

  34. M. Krispin, A. Ullrich, S. Horn, J. Nanopart. Res. 14, 669 (2012)

    ADS  Google Scholar 

  35. S. Davis, in Colloid Science Principles, Methods and Applications edited by T. Cosgrove (Wiley, New York, 2010), p. 317

  36. I.M. Weiss, C. Muth, R. Drumm, H.O.K. Kirchner, BMC Biophys. 11, 2 (2018)

    Google Scholar 

  37. V. de la Fuente et al., Minerals 8, 505 (2018)

    Google Scholar 

  38. M. Darbandi et al., J. Phys. D: Appl. Phys. 45, 195001 (2012)

    ADS  Google Scholar 

  39. T. Swain, G.S. Brahma, J. Elect. Mater. 47, 2817 (2008)

    Google Scholar 

  40. M. Mobin, Sci. Eng. Compos. Mater. 8, 257 (1999)

    Google Scholar 

  41. M. Mobin, A.U. Malik, S. Ahmad, J. Less Common Metals 160, 1 (1990)

    Google Scholar 

  42. M. Brostrom, S. Enestam, R. Backman, K. Makela, Fuel Process. Technol. 105, 142 (2013)

    Google Scholar 

  43. S. Zhou, Y. Wei, B. Li, H. Wang, B. Ma, C. Wang, Sci. Rep. 6, 1 (2016)

    Google Scholar 

  44. T.A. Rafter, Analyst 75, 1485 (1950)

    Google Scholar 

  45. Y. Goto, Jpn. J. Appl. Phys. 3, 739 (1964)

    ADS  Google Scholar 

  46. P. Ayyub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C: Solid State Phys. 21, 2229 (1988)

    ADS  Google Scholar 

  47. Y. El Mendili, J.F. Bardeau, N. Randrianantoandro, J.M. Greneche, F. Grasset, Sci. Technol. Adv. Mater. 17, 597 (2016)

    Google Scholar 

  48. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip, B. Raj, Nanotechnology 17, 5851 (2006)

    ADS  Google Scholar 

  49. M. Tadica, M. Panjanb, V. Damnjanovic, I. Milosevic, Appl. Surf. Sci. 320, 183 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Financial support from University Grant Commission, India is thankfully acknowledged [Project Reference No. 39-537/2010(SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Tiwari, S.D. Thermal decomposition of ferritin core. Appl. Phys. A 125, 805 (2019). https://doi.org/10.1007/s00339-019-3104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3104-9

Navigation