Skip to main content
Log in

Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnFe2O4/SnO2 semiconductor nanocomposites with various mole ratios were prepared by a simple chemical synthesis process that based on sol–gel method. The structural properties were determined by X-ray diffraction and scanning electron microscope technique. The XRD study reveals that no impurity phase, such as ZnO, Fe2O3, existed in all the samples. The average grain size was found to be about 39.51 nm when the mole ratio of ZnFe2O4/SnO2 is 2:1 (Z2S1), which is benefit for improving gas sensing property. The Z2S1 sample showed a relatively higher response (11.46) at a lower working temperature (176 °C) to acetone compared with other composites, and the response/recovery time were both very short. The improving gas sensing properties may be due to the fine grain and the formation of the ZnFe2O4/SnO2 heterojunction structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Zhang, F. Meng, L. Liu, Y. Chen, P. Wang, Highly sensitive H2S sensor based on solvothermally prepared spinel ZnFe2O4 nanoparticles. J. Alloy. Compd. 764, 147–154 (2018)

    Article  Google Scholar 

  2. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep. Purif. Technol. 188, 399–422 (1990)

    Article  Google Scholar 

  3. S. Zawar, S. Atiq, S. Riaz, S. Naseem, Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites. Superlattice. Microst. 93, 50–56 (2016)

    Article  ADS  Google Scholar 

  4. A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B 222, 95–105 (2016)

    Article  Google Scholar 

  5. T. Liu, J. Liu, Q. Liu, L. Rumin, H. Zhang, X. Jing, J. Wang, Shape-controlled fabrication and enhanced gas sensing properties of uniform sphere-like ZnFe2O4 hierarchical architectures. Sens. Actuators B 250, 111–120 (2017)

    Article  Google Scholar 

  6. X. Yang, Q. Yu, S. Zhang, P. Sun, H. Lu, X. Yan, F. Liu, X. Zhou, X. Liang, Y. Gao, G. Lu, Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens. Actuators B 266, 213–220 (2018)

    Article  Google Scholar 

  7. T. Yang, K. Gu, M. Zhu, Q. Lu, C. Zhai, Q. Zhao, X. Yang, M. Zhang, ZnO–SnO2 heterojunction nanobelts: synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sens. Actuators B 279, 410–417 (2019)

    Article  Google Scholar 

  8. H. Yu, T. Yang, Z. Wang, Z. Li, Q. Zhao, M. Zhang, p-N-Heterostructural sensor with SnO–SnO2 for fast NO2 sensing response properties at room temperature. Sens. Actuators B 258, 517–526 (2018)

    Article  Google Scholar 

  9. J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties. Ceram. Int. 40, 10607–10613 (2014)

    Article  Google Scholar 

  10. F. Li, X. Gao, R. Wang, T. Zhang, G. Lu, N. Barsan, Design of core-shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine. ACS Appl. Mater. Inter. 8, 19799–19806 (2016)

    Article  Google Scholar 

  11. H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 3, 8353–8360 (2015)

    Article  Google Scholar 

  12. M. Sun, Y. Chen, G. Tian, A. Wu, H. Yan, H. Fu, Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 190, 186–192 (2016)

    Article  Google Scholar 

  13. X. Hao, B. Wang, C. Ma, F. Liu, X. Yang, T. Liu, X. Liang, C. Yang, H. Zhu, G. Lu, Mixed potential type sensor based on stabilized zirconia and Co1 xZnxFe2O4 sensing electrode for detection of acetone. Sens. Actuators B 255, 1173–1181 (2018)

    Article  Google Scholar 

  14. S. Bradberry, Acetone. Medicine 44, 127

    Article  Google Scholar 

  15. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)

    Article  Google Scholar 

  16. R.P. Patil, C. Hiragond, G.H. Jain, P.K. Khanna, V.B. Gaikwad, P.V. More, La doped BaTiO3 nanostructures for room temperature sensing of NO2/NH3: focus on La concentration and sensing mechanism. Vacuum 166, 37–44 (2019)

    Article  ADS  Google Scholar 

  17. Y. Ma, Y. Lu, H. Gou, W. Zhang, S. Yan, X. Xu, Octahedral NiFe2O4 for high-performance gas sensor with low working temperature. Ceram. Int. 44, 2620–2625 (2018)

    Article  Google Scholar 

  18. C. Liu, B. Wang, T. Wang, J. Liu, P. Sun, X. Chuai, G. Lu, Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures. Sens. Actuators B 248, 902–909 (2017)

    Article  Google Scholar 

  19. F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, L. Shen, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B 188, 469–474 (2013)

    Article  Google Scholar 

  20. S. Wang, J. Zhang, J. Yang, X. Gao, H. Zhang, Y. Wang, Z. Zhu, Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances. RSC Adv. 5, 10048–10057 (2015)

    Article  Google Scholar 

  21. Y. Zhu, H. Wang, J. Liu, M. Yin, L. Yu, J. Zhou, Y. Liu, F. Qiao, High-performance gas sensors based on the WO3–SnO2 nanosphere composites. J. Alloy. Compd. 782, 789–795 (2019)

    Article  Google Scholar 

  22. X. Li, H. Zhang, C. Feng, Y. Sun, J. Ma, C. Wang, G. Lu, Novel cage-like α-Fe2O3/SnO2 composite nanofibers by electrospinning for rapid gas sensing properties. RSC Adv. 4, 27552–27555 (2014)

    Article  Google Scholar 

  23. S. Bai, H. Liu, R. Luo, A. Chen, D. Li, SnO2@Co3O4 p–n-heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing. RSC Adv. 4, 62862–62868 (2014)

    Article  Google Scholar 

  24. N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, N. Van Hieu, Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level. J. Hazard. Mater. 360, 6–16 (2018)

    Article  Google Scholar 

  25. S. Liu, S. Gao, Z. Wang, T. Fei, T. Zhang, Oxygen vacancy modulation of commercial SnO2 by an organometallic chemistry-assisted strategy for boosting acetone sensing performances. Sens. Actuators B 290, 493–502 (2019)

    Article  Google Scholar 

  26. M.A. Han, H.-J. Kim, H.C. Lee, J.-S. Park, H.-N. Lee, Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci. 481, 133–137 (2019)

    Article  ADS  Google Scholar 

  27. X. Hu, Z. Zhu, Z. Li, L. Xie, Y. Wu, L. Zheng, Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sens. Actuators B 264, 139–149 (2018)

    Article  Google Scholar 

  28. H. Xu, J. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B 228, 634–642 (2016)

    Article  Google Scholar 

  29. P. Sun, X. Zhou, C. Wang, K. Shimanoe, G. Lu, N. Yamazoe, Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors. J. Mater. Chem. A 2, 1302–1308 (2014)

    Article  Google Scholar 

  30. S. Li, M. Cheng, G. Liu, L. Zhao, B. Zhang, Y. Gao, H. Lu, H. Wang, J. Zhao, F. Liu, X. Yan, T. Zhang, G. Lu, High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide. J. Colloid Interf. Sci. 524, 368–378 (2018)

    Article  ADS  Google Scholar 

  31. S.-W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuO–SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens. Actuators B 176, 585–591 (2013)

    Article  Google Scholar 

  32. X. Li, D. Lu, C. Shao, G. Lu, X. Li, Y. Liu, Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B 258, 436–446 (2018)

    Article  Google Scholar 

  33. W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, In2O3–SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloy. Compd. 746, 36–44 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (No.51602214, No.11604234 and No.11404236), Natural Science Foundation of Shanxi Province (No. 201601D202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q., Sun, L., Cao, E. et al. Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite. Appl. Phys. A 125, 796 (2019). https://doi.org/10.1007/s00339-019-3102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3102-y

Navigation