Skip to main content
Log in

Electronic and optical properties of Ge doped graphene and BN monolayers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of germanium doping on the properties of hexagonal boron nitride and graphene monolayers was investigated using ab initio calculations. For boron nitride, the obtained results indicate the formation of electronic states in the region of the gap, near the Fermi level. The incorporation of such impurity atoms also induces an apparent decrease in the energy gap and a significant reduction in the optical conductivity. The calculations indicate small absorbance for wavelengths from infrared to visible light. For the graphene layer, it has been obtained a null gap semi-metal material. This result can be associated with the corresponding displacement of the Fermi level. In addition, the germanium doped graphene shows similar optical properties when compared with the pristine layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  3. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Modern Phys. 81, 109 (2009)

    ADS  Google Scholar 

  4. Z. Guan, S. Ni, Appl Phys A Mater Sci Process 123, 678 (2017)

    ADS  Google Scholar 

  5. Z. Guan, S. Ni, S. Hu, RSC Adv 7, 45393 (2017)

    Google Scholar 

  6. T.H. Yuzyriha, D.W. Hess, Thin Solid Films 140, 199 (1986)

    ADS  Google Scholar 

  7. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    ADS  Google Scholar 

  8. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317, 932 (2007)

    ADS  Google Scholar 

  9. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10, 3209 (2010)

    ADS  Google Scholar 

  10. J.R. Soares, M.S. Dresselhaus, Braz. J. Phys. 44, 278 (2013)

    Google Scholar 

  11. A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, A. van Houselt, A.N. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, J. Phys. Condens. Matter 27, 4430029 (2015)

    Google Scholar 

  12. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    ADS  Google Scholar 

  13. Z. Guan, W. Wang, J. Huang, X. Wu, Q. Li, J. Yang, J. Phys. Chem. C 118, 28616 (2014)

    Google Scholar 

  14. Z. Guan, S. Ni, S. Hu, ACS Omega 4, 10293 (2019)

    Google Scholar 

  15. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Google Scholar 

  16. R.-F. Liu, C. Cheng, Phys. Rev. B 76, 014405 (2007)

    ADS  Google Scholar 

  17. H. Cun, A. Hemmi, E. Miniussi, C. Bernard, B. Probst, K. Liu, D.T.L. Alexander, A. Kleibert, G. Mette, M. Weinl, M. Schreck, J. Osterwalder, A. Radenovic, T. Greber, Nano Lett. 18, 1205 (2018)

    ADS  Google Scholar 

  18. E. Aktürk, C. Ataca, S. Ciraci, Appl. Phys. Lett. 96, 123112 (2010)

    ADS  Google Scholar 

  19. J.G. Ren, Q.H. Wu, H. Tang, G. Hong, W. Zhang, S.T. Lee, J. Mater. Chem. A 1, 1821 (2013)

    Google Scholar 

  20. M. Tripathi, A. Markevich, R. Böttger, S. Facsko, E. Besley, J. Kotakoski, T. Susi, ACS Nano 12, 4641 (2018)

    Google Scholar 

  21. M. Sajjad, N. Singh, U. Schwingenschlögl, Appl. Phys. Lett. 112, 043101 (2018)

    ADS  Google Scholar 

  22. N. Singh, U. Schwingenschlögl, Adv. Mater. 29(1), 1600970 (2017)

    Google Scholar 

  23. M.H. Mohammed, A.S. Al-Asadi, F.H. Hanoon, Superlattices Microstruct 129, 14 (2019)

    ADS  Google Scholar 

  24. M.H. Mohammed, A.S. Al-Asadi, F.H. Hanoon, Solid State Commun. 282, 28 (2018)

    ADS  Google Scholar 

  25. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  26. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  27. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  28. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    ADS  Google Scholar 

  29. J. Junquera, O. Paz, D.S. Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)

    ADS  Google Scholar 

  30. A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 43, 934 (2004)

    Google Scholar 

  31. S.K. Gupta, H. He, D. Banyai, M. Si, R. Pandey, S.P. Karna, Nanoscale 6, 5526 (2014)

    ADS  Google Scholar 

  32. S. Azevedo, J.R. Kaschny, C.M.C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

    ADS  Google Scholar 

  33. J. Wu, W. Zhang, Chem. Phys. Lett. 457, 169 (2008)

    ADS  Google Scholar 

  34. J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (School of Computer Science Carnegie Mellon University Pittsburgh, Pittsburgh, 1994)

    Google Scholar 

  35. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B. 70, 205412 (2004)

    ADS  Google Scholar 

  36. L.C. Gomes, S.S. Alexandre, H. Chacham, R.W. Nunes, J. Phys. Chem. C 117(22), 11770 (2013)

    Google Scholar 

  37. J. Lemos de Melo, S. Azevedo, J.R. Kaschny, J. Solid State Chem. 217, 120 (2014)

    ADS  Google Scholar 

  38. F. Bassani, G.P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975)

    Google Scholar 

  39. E.D. Palik, Handbook of Optical Constants of Solids, vol. 1 (Academic Press, New York, 1998)

    Google Scholar 

  40. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, Cambridge, 2013)

    Google Scholar 

  41. J. Wang, S. Deng, Z. Liu, Z. Liu, Natl Sci Rev 2 1, 22 (2015)

    Google Scholar 

  42. T. Guerra, L. Leite, S. Azevedo, Superlattices Microstruct. 104, 281 (2017)

    Google Scholar 

  43. S. Azevedo, F. Moraes, B. de LimaBernardo, Appl. Phys. A 117, 2095 (2014)

    ADS  Google Scholar 

  44. G.L. Zhao, D. Bagayoko, L. Yang, J. Appl. Phys. 99, 114311 (2006)

    ADS  Google Scholar 

  45. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support provided by the Brazilian agencies CAPES, CNPq and INCT - Nanomateriais de Carbono.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Kaschny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo Oliveira, L., Santos, O.F.P., Martins, J.R. et al. Electronic and optical properties of Ge doped graphene and BN monolayers. Appl. Phys. A 125, 790 (2019). https://doi.org/10.1007/s00339-019-3086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3086-7

Navigation