Skip to main content
Log in

Strain effect on the electronic and optical properties of ATaO2N (A = Ca, Sr, and Ba): insights from the first-principles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of strain on the electronic and optical properties of ATaO2N (A = Ca, Sr and Ba) is investigated using the first-principles hybridization functional calculations. The electronic and optical properties under the strains of − 8 to  + 8% in (100) and (010) directions are investigated. The results demonstrate that the band energy gap, band edges, absorption, reflectivity, and refractive index are obviously affected by the strains. Moreover, the effects of strains in (100) direction on all the considered properties of ATaO2N are more obvious than those in (010) direction. The enhanced absorption in the visible light region is also found, which implies that ATaO2N can well respond to the visible light. The present findings could provide a helpful reference to design photoelectronic materials with ATaO2N by strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.-I. Kim, P.M. Woodward, K.Z. Baba-Kishi, C.W. Tai, Chem. Mater. 16, 1267–1276 (2004)

    Google Scholar 

  2. M.R. Brophy, S.M. Pilgrim, W.A. Schulze, J. Am. Ceram. Soc. 94, 4263–4268 (2011)

    Google Scholar 

  3. Y.-I. Kim, Ceram. Int. 40, 5275–5281 (2014)

    Google Scholar 

  4. M. Higashi, R. Abe, T. Takata, K. Domen, Chem. Mater. 21, 1543–1549 (2009)

    Google Scholar 

  5. D. Yamasita, T. Takata, M. Hara, J.N. Kondo, K. Domen, Solid State Ionics 172, 591–595 (2004)

    Google Scholar 

  6. Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi, K. Teshima, CrystEngComm 15, 8133–8138 (2013)

    Google Scholar 

  7. M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 452, 120–123 (2008)

    ADS  Google Scholar 

  8. M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 135, 10238–10241 (2013)

    Google Scholar 

  9. D. Oka, Y. Hirose, T. Fukumura, T. Hasegawa, Cryst. Growth Des. 14, 87–90 (2014)

    Google Scholar 

  10. F. Oehler, R. Naumann, R. Köferstein, D. Hesse, S.G. Ebbinghaus, Mater. Res. Bull. 73, 276–283 (2016)

    Google Scholar 

  11. J. Xu, C. Pan, T. Takata, K. Domen, Chem. Commun. 51, 7191–7194 (2015)

    Google Scholar 

  12. A. Kubo, G. Giorgi, K. Yamashita, Chem. Mater. 29, 539–545 (2017)

    Google Scholar 

  13. H. Wolff, R. Dronskowski, J. Comput. Chem. 29(13), 2260–2267 (2008)

    Google Scholar 

  14. D. Oka, Y. Hirose, H. Kamisaka, T. Fukumura, K. Sasa, S. Ishii, Sci. Rep. 4(2969), 4987 (2014)

    Google Scholar 

  15. E. Guenther, R. Hagenmayer, M. Jansen, Z. Anorg, Allg. Chem. 626(7), 1519–1525 (2000)

    Google Scholar 

  16. S.G. Ebbinghaus, R. Aguiar, A. Weidenkaff, S. Gsell, A. Reller, Solid State Sci. 10(6), 709–716 (2008)

    ADS  Google Scholar 

  17. A. Ziani, C.L. Paven, L.L. Gendre, F. Marlec, R. Benzerga, F. Tessier, F. Cheviré, M.N. Hedhili, A.T. Garcia-Esparza, S. Melissen, P. Sautet, T.L. Bahers, K. Takanabe, Chem. Mater. 29, 3989–3998 (2017)

    Google Scholar 

  18. R. Marchand, F. Pors, Y. Laurent, O. Regreny, J. Lostec, J.M. Haussonne, J. Phys. Colloques 47, C1-901–C1-905 (1986)

    Google Scholar 

  19. F. Pors, R. Marchand, Y. Laurent, P. Bacher, G. Roult, Mater. Res. Bull. 23(10), 1447–1450 (1988)

    Google Scholar 

  20. X. Gouin, R. Marchand, Y. Laurent, F. Gervais, Solid State Commun. 93, 857–859 (1995)

    ADS  Google Scholar 

  21. G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Electrochemistry 70(6), 460–462 (2002)

    Google Scholar 

  22. T. Matoba, K. Maeda, K. Domen, Chem. Eur. J. 17, 14731–14735 (2011)

    Google Scholar 

  23. Y.-I. Kim, W. Si, P.M. Woodward, E. Sutter, S. Park, T. Vogt, Chem. Mater. 19, 618–623 (2007)

    Google Scholar 

  24. B.B. Dong, Y. Qi, J.Y. Cui, B.D. Liu, F.Q. Xiong, X. Jiang, Z. Li, Y.J. Xiao, F.X. Zhang, C. Li, Dalton Trans. 46, 10707–10713 (2017)

    Google Scholar 

  25. A.M. Hafez, N.M. Salem, N.K. Allam, Phys. Chem. Chem. Phys. 16, 18418 (2014)

    Google Scholar 

  26. I.E. Castelli, M. Pandey, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 91, 165309-1–165309-6 (2015)

    ADS  Google Scholar 

  27. C.M. Fang, G.A. de Wijs, E. Orhan, G. de With, R.A. de Groot, H.T. Hintzen, R. Marchand, J. Phys. Chem. Solids 64, 281–286 (2003)

    ADS  Google Scholar 

  28. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)

    ADS  Google Scholar 

  29. P.E. Blöchl, C.J. Först, J. Schimpl, Mater. Sci. 26, 33–41 (2002)

    Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 3865–3868 (1997)

    Google Scholar 

  31. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    ADS  Google Scholar 

  32. B. Modak, S.K. Ghosh, J. Phys. Chem. C 120, 6920–6929 (2016)

    Google Scholar 

  33. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Ángyán, J. Chem. Phys. 124, 154709 (2006)

    ADS  Google Scholar 

  34. A.M. Hafez, A.F. Zedan, S.Y. Qaradawi, N.M. Salem, N.K. Allam, Energy Convers. Manag. 122, 207–214 (2016)

    Google Scholar 

  35. E.A. Zhurova, V.E. Zavodnik, V.G. Tsirel'Son, Kristallografiya 40(5), 753–760 (1995)

    ADS  Google Scholar 

  36. X.F. Fan, W.T. Zheng, X. Chen, D.J. Singh, PLoS ONE 9(3), e91423-1–e91423-10 (2014)

    ADS  Google Scholar 

  37. Y.X. Han, C.L. Yang, Y.T. Sun, M.S. Wang, X.G. Ma, J. Alloys Compd. 585, 503–509 (2014)

    Google Scholar 

  38. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Nano Lett. 13, 3626–3630 (2013)

    ADS  Google Scholar 

  39. K.L. He, C. Poole, K.F. Mak, J. Shan, Nano Lett. 13(6), 2931–2936 (2013)

    ADS  Google Scholar 

  40. D. Lloyd, X.H. Liu, J.W. Christopher, L. Cantley, A. Wadehra, B.L. Kim, B.B. Goldberg, A.K. Swan, J.S. Bunch, Nano lett. 16(9), 5836–5841 (2016)

    ADS  Google Scholar 

  41. Y.C. Wu, H.R. Fuh, D. Zhang, C.O. Coileáin, H.J. Xu, J. Cho et al., Nano Energy 32, 157–164 (2017)

    Google Scholar 

  42. D. Maeso, S. Pakdel, H. Santos, N. Agraït, J.J. Palacios, E. Prada, G. Rubio-bollinger, Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab0bc1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under grant nos. NSFC-11874192 and NSFC-11574125, as well as the Taishan Scholars project of Shandong Province (ts201511055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Lu Yang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZC., Yang, CL., Meng, QT. et al. Strain effect on the electronic and optical properties of ATaO2N (A = Ca, Sr, and Ba): insights from the first-principles. Appl. Phys. A 125, 789 (2019). https://doi.org/10.1007/s00339-019-3078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3078-7

Navigation