Skip to main content
Log in

RETRACTED ARTICLE: Study of effect of Gd substitution at the Fe site on structural, dielectric and electrical characteristics of BiFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

This article was retracted on 19 May 2022

This article has been updated

Abstract

In this communication, the effect of gadolinium (Gd) substitution on structural, microstructural, electrical and dielectric properties of bismuth ferrite BiFeO3 (i.e. Bi(Fe0.95Gd0.05)O3 abbreviated as BFGO5) has been reported. The development of an environment-friendly lead-free multiferroic material by substituting a rare earth element at the uncommon site of BiFeO3 (BFO) (i.e. Gd at the Fe site rather than commonly preferred Bi site) for the tailoring of its multiferroic properties has been attempted in this study. The present studied material has been fabricated through a conventional standard solid-state reaction (SSR) method using carbonates and high-quality oxides in a stoichiometric amount. The phase formation and basic crystal data were analysed by X-ray diffraction technique which shows a single-phase formation of BFGO5 material in orthorhombic symmetry. The average crystallite size was calculated using Scherrer’s formula and found to be 84 nm. The surface morphology and compositions examined by FE-SEM, EDX, FT-IR and TEM show the formation of highly compact sample with uniform distribution of grains. Detailed studies of dielectric parameters (dielectric constant and tangent loss) in a selected frequency range (1–1000 kHz) at different temperatures (273–773 K) clearly exhibit enhancement on dielectric properties of BFO. Studies of its impedance spectroscopy, electrical modulus and electrical conductivity confirm the semiconductor behaviour [negative temperature coefficient of resistance (NTCR)] and non-Debye type relaxation process of the material. The polarization versus electric field (P–E) analysis of BFGO5 shows an improvement in remnant polarization as compared to the parent compound BFO. Therefore, based on the several investigations of results, the BFGO5 material could be considered as a favourable candidate for electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 08 September 2021

    Editor's Note: Readers are alerted that the reliability of the data presented in this article is subject to criticism that is being considered by the editors. We will update readers once we have further information and all parties have been given an opportunity to respond in full.

  • 19 May 2022

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s00339-022-05625-7

References

  1. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    Article  ADS  Google Scholar 

  2. W. Prellier, M. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17, R803 (2005)

    Article  ADS  Google Scholar 

  3. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45, 822–831 (2019)

    Article  Google Scholar 

  4. N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J Alloy Compd. 688, 858–869 (2016)

    Article  Google Scholar 

  5. N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010)

    Article  Google Scholar 

  6. E.A.V. Ferri, I.A. Santos, E. Radovanovic, R. Bonzanini, E.M. Girotto, Chemical characterization of BiFeO3 obtained by Pechini method. J. Braz. Chem. Soc. 19, 1153–1157 (2008)

    Article  Google Scholar 

  7. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, D.K. Mishra, D.R. Sahu, A.K. Pradhan, V.V. Srinivasu, B.B. Nayak, S. Verma, B.K. Roul, Defect driven multiferroicity in Gd doped BiFeO3 at room temperature. J. Magn. Magn. Mater. 322, 3614–3622 (2010)

    Article  ADS  Google Scholar 

  8. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Louts, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)

    Article  ADS  Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  ADS  Google Scholar 

  10. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)

    Article  ADS  Google Scholar 

  11. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys. Lett. A 381, 2721–2730 (2017)

    Article  ADS  Google Scholar 

  12. A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)

    Article  Google Scholar 

  13. A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, Effect of Y-doping on the electrical transport properties of nanocrystalline BiFeO3. J. Appl. Phys. 112, 014321–014328 (2012)

    Article  ADS  Google Scholar 

  14. V.V. Lazenka, A.F. Ravinski, I.I. Makoed, J. Vanacken, G. Zhang, V.V. Moshchalkov, Weak ferromagnetism in La-doped BiFeO3 multiferroic thin films. J. Appl. Phys. 111, 123916 (2012)

    Article  ADS  Google Scholar 

  15. H. Uchida, R. Ueno, H. Funakubo, S. Koda, Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J. Appl. Phys. 100, 014106 (2006)

    Article  ADS  Google Scholar 

  16. Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. J. Appl. Phys. 104, 116109 (2008)

    Article  ADS  Google Scholar 

  17. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloy Comp. 598, 142–150 (2014)

    Article  Google Scholar 

  18. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20(6), 3970–3974 (2014)

    Article  Google Scholar 

  19. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 4800–4809 (2016)

    Article  Google Scholar 

  20. D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

    Article  Google Scholar 

  21. A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of FeSe2 nanoparticles and FeSe2/FeO(OH) nanocomposites by hydrothermal method. J. Alloy Compd. 625, 26–33 (2015)

    Article  Google Scholar 

  22. G.S. Lotey, N.K. Verma, Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14, 742 (2012)

    Article  ADS  Google Scholar 

  23. F. Chang, S. Guilin, F. Kun, Q. Ping, Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earth 24, 273–276 (2006)

    Article  Google Scholar 

  24. D.V. Vassallo, M.R. Simões, L.B. Furieri, M. Fioresi, J. Fiorim, E.A.S. Almeida, J.K. Angeli, G.A. Wiggers, F.M. Peçanha, M. Salaices, Toxic effects of mercury, lead and gadolinium on vascular reactivity. Braz. J. Med. Biol. Res. 44, 939–946 (2011)

    Article  Google Scholar 

  25. T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731–1737 (2003)

    Article  Google Scholar 

  26. W. Zhou, H. Deng, H. Cao, J. He, J. Liu, P. Yang, J. Chu, Effects of Sm and Mn co-doping on structural, optical and magnetic properties of BiFeO3 films prepared by a sol–gel technique. Mater. Lett. 144, 93–96 (2015)

    Article  Google Scholar 

  27. R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys. Chem. C 114, 21390–21396 (2010)

    Article  Google Scholar 

  28. D. Kuang, P. Tang, X. Wu, S. Yang, X. Ding, Y. Zhang, Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films. J. Alloy. Compd. 671, 192–199 (2016)

    Article  Google Scholar 

  29. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525–529 (2012)

    Article  ADS  Google Scholar 

  30. S. Irfan, S. Rizwan, Y. Shen, L. Li, S. Butt, C.W. Nan, The gadolinium (Gd3+) and tin (Sn4+) co-doped BiFeO3 nanoparticles as new solar light active photocatalyst. Sci. Rep. 7, 42493 (2017)

    Article  ADS  Google Scholar 

  31. M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles. Ultrason. Sonochem. 19, 1079–1086 (2012)

    Article  Google Scholar 

  32. S. Moshtaghia, D. Ghanbarib, M. Salavati-Niasari, Characterization of CaSn(OH)6 and CaSnO3 nanostructures synthesized by a new precursor. J. Nanostruct. 5, 169–174 (2015)

    Article  Google Scholar 

  33. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Facile fabrication of Dy2Sn2O7–SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Colloid Interface Sci. 497, 298–308 (2017)

    Article  ADS  Google Scholar 

  34. B. Park, An interactive powder diffraction data interpretations and indexing program version 2.1 (E. WU School of Physical Sciences, Flinders University of South Australia, Bedford Park, 1989), p. 5042

    Google Scholar 

  35. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2019)

    Article  Google Scholar 

  36. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3. Ceram. Int. 44, 21330–21337 (2018)

    Article  Google Scholar 

  37. A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics. J. Mater. Sci. Mater. Electron. 27, 1209–1216 (2016)

    Article  Google Scholar 

  38. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic, Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution. J Alloy. Compd. 747, 895–904 (2018)

    Article  Google Scholar 

  39. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1−xLaxFeO3 system studied using 57Fe NMR. Phys. Solid State 45(1), 141–145 (2003)

    Article  ADS  Google Scholar 

  40. I.O. Troyanchuk, A.N. Chobot, O.S. Mantytskaya, N.V. Tereshko, Magnetic properties of Bi(Fe1−xMx)O3 (M = Mn, Ti). Inorg. Mater. 46, 424–428 (2010)

    Article  Google Scholar 

  41. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Article  Google Scholar 

  42. J.R. Macdonald, W.B. Johnson, Impedance spectroscopy theory, experiments and applications (Wiley, Hoboken, 2005)

    Google Scholar 

  43. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  44. S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)

    Article  ADS  Google Scholar 

  45. N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633 (1996)

    Article  Google Scholar 

  46. A. Sinha, A. Dutta, Microstructure evolution, dielectric relaxation and scaling behaviour of Dy for-Fe substituted Ni-nanoferrites. RSC Adv. 5, 100330–100338 (2015)

    Article  ADS  Google Scholar 

  47. G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behaviour of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)

    Article  ADS  Google Scholar 

  48. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ion. 179, 689 (2008)

    Article  Google Scholar 

  49. A.K. Jonscher, Universal relaxation law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  50. B. Dhanalakshmi, P. Kollu, B. Chandra Sekhar, B. Parvatheeswara Rao, P.S.V. Subba Rao, Enhanced magnetic and magneto-electric properties of Mn doped multiferroic ceramics. Ceram. Int. 43, 9272–9275 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Physical Laboratory, New Delhi, for providing some TEM characterization facility. Author Alok Shukla gratefully acknowledges the financial support received from SERB-DST, Government of India, New Delhi, in the form of Research Project no. EMR/2015/002420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Shukla.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thansanga, L., Shukla, A., Kumar, N. et al. RETRACTED ARTICLE: Study of effect of Gd substitution at the Fe site on structural, dielectric and electrical characteristics of BiFeO3. Appl. Phys. A 125, 764 (2019). https://doi.org/10.1007/s00339-019-3058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3058-y

Navigation